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Just as mean motions, usually described as acoustic streaming, can be generated by 
sound waves, so also those cochlear travelling waves into which incident sound waves 
are converted in the liquid-filled mammalian inner ear are capable of generating 
mean motions. These predominate, for acoustic components of each frequency w ,  
near the characteristic place where the wave energy E per unit length rises rather 
steeply to a maximum Emax before dropping precipitously to zero. 

Even though the nature of cochlear travelling waves, as determined (above all) by 
the sharply and continuously falling distribution of stiffness for the basilar membrane 
vibrating within the cochlear fluids, is very different from that of ordinary sound 
waves (see $02, 3 and 4 respectively for energy distribution along the length of the 
cochlea, over a cochlear cross-section and within boundary layers), nevertheless a 
comprehensive analysis of mean streaming motions in the cochlea shows them to be 
governed by remarkably similar laws. The expression 

iP c - ~  -$V(dV/dx) 0-l 

(equation (1)) appropriate to a wave travelling in the 2-direction with velocity 
amplitude V(z), as obtained by Rayleigh (1896) for the mean acoustic-streaming 
velocity just outside a boundary layer due to wave dissipation therein, remains a 
good approximation (see $85 and 6 -with some modest corrections, at  low or at  high 
wavenumbers respectively, analysed in $5 7 and 8) for travelling waves in the cochlea ; 
where, however, the decrease of their phase velocity c to low values near the 
characteristic place conspires with the increase of V to enhance streaming there. 

Farther from the boundary layer attached to the basilar membrane, the mean 
streaming is derived ($9) as a low-Reynolds-number motion compatible with the 
distribution (1) of ‘effective slip velocity ’ at the boundary. This velocity’s precipitous 
fall to zero at the characteristic place is shown ( 8 9  and 10) to produce there a mean 
volume outflow 
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(equation (160)) per unit length of the basilar membrane into the scala media; here, 
p and v are the endolymph’s density and kinematic viscosity (essentially, those of 
water) and L is the e-folding distance for basilar-membrane stiffness. 

Equation (160), derived here for a freely propagating wave (and so not allowing for 
enhancements from any travelling-wave amplification - discussed qualitatively in 5 3 
- due to forcing by vibrations of outer hair cells) is the main conclusion of this paper. 
Physiological questions of whether this flow q may be channelled through the space 
between the tectorial membrane and inner hair cells, whose stereocilia may therefore 
be stimulated by a mean deflecting force, are noted here but postponed for detailed 
consideration in a later paper. 
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1. Introduction 
Mean motions of fluid induced by sound waves are called acoustic streaming (see 

Lighthill 1978a for a detailed survey, and Lighthill 1978b, 54.7 for a synopsis, in the 
wider context of waves in fluids, of steady streaming generated by wave attenuation). 
But, in healthy mammalian ears, sound waves incident on the eardrum are converted 
by the middle ear’s linkage mechanism into cochlear travelling waves, that 
propagate vibratory movements of the basilar membrane within the inner-ear fluids 
(see Lighthill 1991 and references therein). This is a paper concerned with estimating 
the magnitude of any mean streaming motions generated by acoustic signals after 
conversion into cochlear travelling waves. 

The purposes of such estimation are mainly biological, being indicated in 52 below. 
Briefly, the study is motivated by observations (K. A. I .  Flock 1988, personal 
communication) showing that the transduction function of inner hair cells - that is, 
their ability to stimulate neural activity on reception of a signal - can be brought 
into sustained operation even by steady deflection of their stereocilia. It is a 
challenge, therefore, to investigate whether attenuation of the cochlear travelling 
wave can generate mean streaming motions, and to  estimate their magnitudes, with 
the purpose of investigating whether they can play a role in inner-hair-cell 
transduction by such deflection of stereocilia. 

The present paper, however, concentrates upon the use of theoretical fluid 
mechanics to estimate the mean streaming motions (their detailed biological 
implications being left for consideration elsewhere). It is above all the highly 
specialized nature of the living mammalian cochlea, and the strictly limited 
capability of presently available techniques for making in vivo observations of its 
fluid motions, that constrain us to employ theoretical methods. 

Fortunately, the analysis proves t o  be both tractable and also of sufficiently wide 
interest to be appropriate for presentation to a general fluid-mechanics readership. 
As the title of this paper implies, it turns out that, notwithstanding the conversion 
of acoustic signals in air into waves of a quite different type (with fluid motions more 
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like those in water waves) in the aqueous medium of the cochlea, nevertheless the 
fundamentals of acoustic-streaming theory remain rather closely applicable in this 
different system. Streaming gains very substantially in importance, however, 
because of the greatly reduced wave speed. 

Indeed for each pure-tone component of an acoustic signal, say with frequency o, 
the velocity of the cochlear travelling wave tends towards zero at a particular place : 
the characteristic place for that frequency. Furthermore, the wave amplitude 
increases as this place is approached, and both these features are found to increase 
the local magnitude of mean streaming motions. It follows that analysis needs to 
concentrate particularly on the streaming generated by acoustic components of each 
frequency near the characteristic place for that frequency -which, too, is where they 
may (possibly) be important for inner-hair-cell transduction. 

This is a region where, on either side of the basilar membrane, fluid motions are 
considered (see the review by Lighthill 1991, for example) to be rather similar (on 
greatly different scales, of course) to those associated with the propagation of surface 
waves on deep water ; although with the wavy motions of the free surface replaced 
by those of the basilar membrane and with the role of (say) gravity as restoring force 
replaced by the corresponding stiffness properties of the basilar membrane, whose 
inertia, also, needs to be taken into account. It is the stiffness decrease along the 
length of the cochlea - a decrease by close on four orders of magnitude between base 
(where the wave originates) and apex - that initiates the reduction in wave speed. 

Near the characteristic place, moreover, the effective impedance of the basilar 
membrane is diminished to a value even less than the local stiffness by an inertial 
component, allowing an even bigger reduction in the waves' phase velocity c. Also, 
the velocity U of energy propagation (group velocity) is reduced still more, allowing 
wave energy density - and therefore amplitude - to increase dramatically, before 
they ultimately decay to zero as the result of a powcrful action of viscous dissipation 
on the greatly slowed-down wave. 

Now, where wave energy is sharply attenuated, theoretical fluid mechanics 
suggests a general likelihood of the appearance of streaming motions. Indeed, the 
knowledge that waves in fluids necessarily transport momentum - the momentum 
flow rate being obtained by dividing energy flow by phase velocity - may give an 
expectation that, where wave energy is dissipated, the corresponding wave 
momentum becomes converted into a mean motion. For example, steep attenuation 
in a powerful ultrasonic beam is known (Lighthill 1978a) to convert its momentum 
flow into a jet-like form of acoustic streaming. 

By contrast, viscous attenuation a t  rather lower frequencies is insignificant in the 
body of the fluid, being effectively confined to thin Stokes boundary layers. A 
somewhat different form of acoustic streaming then results (Lighthill 19783, pp. 
346-349) from the fact that the forces generating it are concentrated within the 
interiors of those thin layers attached to solid boundaries. Nevertheless these forces 
(assuming the form of gradients of Reynolds stresses) produce just outside such a 
layer a substantial streaming velocity which can be written as 

'P~-'-tlr(dF'/d~) 4 w-l (1) 

if the sound waves' velocity amplitude is taken as (V(Z), 0, 0) just outside the layer, 
where the local distribution (1)  of forced streaming motions (sometimes described as 
'an effective slip velocity ') may act, furthermore, to set up a field of low-Reynolds- 
number mean motion in its neighbourhood. 

A third possible source of streaming is suggested by the above-mentioned analogy 
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with surface waves on deep water. These are waves where, even when the water’s 
mean motion a t  any fixed point (the Eulerian mean motion) is zero, the individual 
particles of fluid have a non-zero mean motion 

UM (2) 

known as the Stokes drift. In more general cases, when these waves are combined 
with a non-zero Eulerian mean motion uE, the Stokes drift u, represents the 
difference 

u, = uL-uE (3) 

between the Lagrangian mean motion uL (the mean velocity for a particle of fluid) 
and the Eulerian mean motion (mean fluid velocity at a fixed point). 

The Stokes drift U, for deep-water waves takes a familiar exponential form which 
reaches a maximum Pc-’ (where V is velocity amplitude and c is phase velocity) a t  
the free surface. If expression (3) took such a form for the closely analogous cochlear 
travelling waves, then it might be imagined that u, would play a significant role in 
cochlear streaming. Once the free surface is replaced, however, by a vibrating basilar 
membrane with boundary layer attached, the total Stokes drift flow outside this 
boundary layers turns out ( $ 5 )  to be exactly counterbalanced by an equal and 
opposite flow inside it. 

Accordingly, it turns out that the second of the above three types of acoustic 
streaming is the one important in the cochlea. A careful study by the Stokes 
boundary-layer approximation shows it ,  remarkably enough, to be given by exactly 
the same expression (l) ,  with V now as the velocity amplitude of the basilar 
membrane’s vibration, wherever the fluid motions are locally two-dimensional ; while 
that expression’s generalization to fully three-dimensional motions also takes the 
same form as it does for acoustic streaming. 

The challenge of uncovering the underlying physics of why such different types of 
streaming take essentially the same form when the boundary-layer approximation is 
used is faced in $6 below. The physical arguments need care and may be felt to call 
for verification by rigorous mathematical deduction. Although formal matched- 
asymptotics procedures could have provided this, a preferable method is to calculate 
uniformly valid viscous-flow solutions (see the Appendices) which do not depend on 
the boundary-layer approximation. They have the great advantage of both (i) 
proving the correctness of equation (1) in that limit where a truly separate Stokes 
boundary layer is present (its thickness being small compared with the scale of the 
travelling-wave motions) and (ii) computing those modifications to it which occur a t  
high wavenumbers where no such separation into a boundary layer and an external 
irrotational flow can exist. 

The streaming analysis is preceded by a brief general account ($2) of cochlear 
biomechanics (see Lighthill 1991 for a much fuller review). This needs to stress first 
of all that the basilar membrane is by no means ‘a membrane’ in the mechanics 
sense ; instead, its stiffness properties are highly anisotropic (Voldfich 1978, 1983) in 
a way that allows neighbouring short sections of the basilar membrane to vibrate 
almost independently of one another. For each frequency w this facilitates the above- 
mentioned continuous decrease, as the characteristic place is approached, in the 
phase velocity c and therefore also in the local wavelength h = 27cc/w. 

Results in this paper, however, are expressed not in terms of such a local 
wavelength but in terms of the wavenumber 

k = w / c ,  (4) 
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with its precise definition as the rate of increase in phase lag of basilar-membrane 
oscillations with distance from the base (origin of the travelling wave) ; evidently, the 
wavelength h = 2 x / k  has a less clear-cut meaning for waves with spatially varying 
properties. A t  each position, as the wavenumber k becomes large, the frequency w 
approaches a constant asymptote ($2) in a way that permits those extremely low 
values, already mentioned, of the group velocity 

u = aw/aii. ( 5 )  

The remarkable recent discovery that, at  low sound levels, a physiologically active 
process (thought to reside in the outer hair cells) amplifies the vibrations of the 
basilar membrane, is also touched on briefly in $2 (with references). By increasing 
travelling-wave amplitudes, it is seen as enhancing the potential importance of 
streaming motions. 

Analysis of the travelling wave is based on high-frequency asymptotics (sometimes 
referred to as the Liouville-Green approximation, or else ‘ WKB ’), and reasons for 
its expected good accuracy near the characteristic place are given in $2. The three- 
dimensional distribution of wave energy outside the Stokes boundary layer, based on 
solutions of the Laplace equation 

a2#/ay2 + a y / a Z 2  - k24 = o (6) 

for waves of wavenumber k (with y and x as Cartesian coordinates in a cochlear cross- 
section), is analysed in $3. 

At a particular point on the basilar membrane rather close to the characteristic 
place, these solutions have locally an approximately two-dimensional form, whose 
continued compatibility with the assumptions of high-frequency asymptotics is 
verified in $4. Then its modified character within the Stokes boundary layer is 
explained (with references to Appendix A for uniformly valid viscous-flow solutions 
at  high wavenumbers). Studies in 55 establish the nature of the ‘Stokes drift ’ (3), and 
show its net mass flow to be zero (a property proved in Appendix B to be exact for 
all wavenumbers). 

The paper’s main conclusions for locally two-dimensional flow then follow (as 
described earlier) in $6, with references to the Appendices for full mathematical 
proofs. They are extended to general three-dimensional motions in $ 7 .  High- 
wavenumber modifications, such as are computed in detail in Appendix A for energy 
dissipation rate and in Appendices B and C (respectively) for the two parts of (l) ,  are 
briefly summarized, with discussion, in $8. 

Finally, $9 gives preliminary consideration to the overall low-Reynolds-number 
mean-flow patterns that may be forced by the streaming motions generated near the 
solid boundary, and $10 goes on to offer estimates of their magnitudes in the 
immediate neighbourhoods of inner-hair-cell stereocilia ; on the other hand, in this 
essentially fluid-mechanical paper, all attempts to draw any specific biological 
conclusions are for the time being deferred for further consideration in possible future 
joint work with cochlear physiologists. 

2. Biomechanics of cochlear travelling waves 
Cochlear travelling waves, and their role in the ear’s frequency discrimination, 

were discovered in experiments on cadavers (BBkBsy 1960) and related to the steeply 
graded stiffness properties of the basilar membrane vibrating within the cochlear 
fluids. Later, however, the introduction of specialized techniques allowing measure- 
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FIGURE 1. Reconstruction by Zweig (1976) of the travelling waves on a squirrel monkey’s basilar 
membrane excited by a pure tone of 70 dB amplitude a t  a frequency of 2 kHz. The displacement 
curve for the travelling wave is shown a t  one instant of time (note the transition from very long 
to very short waves); the envelope of the travelling wave is also given. This reconstruction is 
computed from measurements of amplitude and phase made by Rhode (1971), with the use of a 
reasonable ‘smoothing ’ assumption to interpolate between Rhode’s phase measurements at  
different points of the membrane. Note that the vertical scale is enormously enlarged, being given 
in nanometres as against a horizontal scale of centimetres. 

ments in vivo of cochlear response to sound (Johnstone, Taylor & Boyle 1970; 
Rhode 1971) showed the biomechanics of a living mammalian cochlea to be notably 
different from the mechanics of a cochlea immediately after death : in response to a 
pure tode, for example, the build-up in wave amplitude at the characteristic place 
reached a much sharper peak (higher by 20 to 30 dB) in a living animal. Yet the 
cochlear fluids exhibit the same mechanical properties (essentially, those of water) 
before and after death. 

It was therefore to  be expected that the other component of the mechanical system 
- the basilar membrane itself - would prove to have very different properties in 
living animals from those identified in cadavers (essentially, the properties of an 
isotropic elastic plate) by Bdkdsy (1960). Soon, VoldEich (1978, 1983) uncovered 
those remarkably anisotropic properties (see fj 1)  of the living basilar membrane that 
allow neighbouring short sections to vibrate almost independently of one another ; 
and Lighthill (1981, 1983) indicated, using methods that had been introduced by 
Steele (1974, 1976) and Steele & Taber (1979), the very special importance of this 
discovery for the propagation of cochlear travelling waves. 

Above all, those properties of the basilar membrane avoid any substantial 
dependence of its stiffness on the wavenumber k (whereas the local stiffness of an 
isotropic plate is a steeply increasing function of wavenumber because it includes iL 
term in Gk4, where G is its flexural rigidity). Thus the travelling wave, as its distance 
from the base increases, can continue to experience that decrease in stiffness which 
slows it down, even though, as a result, its wavenumber is becoming much bigger. 

Figure 1 shows the character of the cochlear travelling waves excited on a squirrel 
monkey’s basilar membrane by a pure tone with a sound level of 70dB a t  a 
frequency of 2 kHz, as indicated by the classical experiments of Rhode (1971). The 
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waveform (distribution of basilar-membrane displacement in nanometres, as a 
function of position in centimetres) is plotted a t  one instant of time -note the 
transition from very long to very short waves, associated with a steep increase of 
amplitude preceding a precipitous fall to zero - while the envelope of the travelling 
wave is also given. 

This paper concentrates on the waves in a region where they have become quite 
short, with local wavelength of about 2 mm or less, corresponding at 2 kHz to a wave 
speed c of at most 4 ms-l. In figure 1, for example, this is the region around 1.3 cm 
or more from the base. We focus attention on such regions of relatively low wave 
speed and large amplitude because these are where (if anywhere) a formula such as 
(1) has at least some chance of representing a significant mean streaming velocity. 

In terms of the wavenumber k ,  we are concerned with regions where k 3 3 mm-'. 
In such regions the fluid motions excited by the basilar membrane's wavelike 
movements may be expected to penetrate only a limited distance (of order k-l)  into 
the cochlea, being therefore uninfluenced by its external boundaries at  a distance h 
of at least 0.6 mm away. 

Here, there is a close parallel with surface waves on water of depth h which, if 
kh 2 1.8, are unaffected by the bottom (see, for example, Lighthill 1978b, p. 217) and 
may be described as 'waves on deep water'. For such waves, the well-known 
dispersion relationship u2 = gk linking frequency and wavenumber can be physically 
interpreted (Lighthill 1978b, p. 213) in terms of a stiffness pg per unit area of free 
surface - whose displacement 6 from its undisturbed shape is resisted by a force pg3 
per unit area - and an inertia pk-' per unit area associated with fluid motions 
penetrating a mean distance k-' into the fluid; thus, 

stiffness 
pg = g k .  w2 = -- 

inertia pk-' 
- (7) 

In energy terms, the stiffness and inertia are coefficients of $? and @fl/at)z in the 
potential and kinetic energies per unit area, and the relationship (7) ensures that - 
as in all vibrations - energy is divided equally between its kinetic and potential 
forms. 

Despitekheir similarities to surface waves on deep water, cochlear travelling waves 
exhibit certain differences, as follows. Fluid inertia is essentially doubled, since on 
both sides of the basilar membrane fluid motions are excited. It is also modified, in 
comparison with long-crested surface waves, by the limited width of the basilar 
membrane, stretched between the rigid bony shelf and spiral ligament. All this means 
that we must speak of an inertia per unit length of basilar membrane (rather than 
per unit area) ; which should take the form 

Apk-l +B,  (8) 

where a fluid component Apk-' (with A as a distance comparable with the basilar 
membrane's width) is augmented by a constant term B representing the inertia per 
unit length of the basilar membrane itself along with any other solid material that 
vibrates with it.t  

t In this paper, then, we define inertia and stiffness at each cochlear cross-section as the 
coefficients of ;@[/:/at)' and in the kinetic and potential energies per unit length, respectively, 
where [ is the basilar membrane's displacement a t  the point of the cross-section where 
displacement is greatest. (This departure from the choice, h, of generalized coordinate in Lighthill 
1981, 1983, 1991 is prompted by some readers' resistance to the use of such a generalized coordinate 
with the dimensions of area.) r 
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Besides inertia, both damping and stiffness are also modified. The boundary 
condition satisfied by fluid motions a t  the basilar membrane leads to the presence of 
Stokes boundary layers on both sides of it,  producing increased damping (see $4 and 
Appendix A). 

But by far the largest departure from (7)  lies in the fact ($1)  that the stiffness s of 
the basilar membrane, instead of taking a uniform value pg, is a steeply falling 
function s ( x )  of distance x from the base. This, with equation (8) for inertia, implies 
that the dispersion relationship (7) is replaced by a relationship 

varying with position - albeit in a relatively ‘smooth’ manner. 
Fortunately, however, general theories of waves in fluids (Lighthill 1978 b, $4.5) 

show how approximate solutions of excellent accuracy may be derived for systems 
with a dispersion relationship varying smoothly with position. Where there is 
variation with just one coordinate x ,  such solutions are obtained from these four 
rules : 

(a )  a t  each position x ,  the local wavenumber k (rate of increase in phase lag with 
x) is given to good approximation by the dispersion relationship ; 

(6) the waveform is locally that appropriate to waves with a uniform wavenumber 
taking this value k ; 

( c )  its amplitude varies with position as specified by the property that energy 
travels at the group velocity (5) ; and 

( d )  relative errors in these solutions are of order the square of the ratio of a relative 
rate of change in k (such as k- laklax)  to k itself. 

All of the different forms of high-frequency asymptotics - including the WKB 
method widely used by Steele (1974, 1976) - give identical results to these; and 
Steele & Taber (1979) explicitly compared them, for a ‘two-dimensional ’ cochlear 
model, with a close-mesh finite-difference computation which Allen (1977) had been 
able to make in this case, and found extremely close agreement. 

Given the dispersion relationship (9) which makes w-2 a linear function of k-l ,  we 
obtain the group velocity (5) in the form 

For waves of a specified frequency o, rule ( a )  gives the variation of k as 

AP = A p d  
k =  

&s(x)-B s(x)-s(x,)’ 

which becomes large as x approaches x,, that ‘resonance ’ position (for frequency w )  
where the inertia B of the basilar membrane and of other solid material that moves 
with it satisfies the equation 

w2B = ~ ( x , ) .  (12) 

Also, rule (6) implies that the local form (6) of Laplace’s equation for wavenumber 
k governs the fluid motion outside the Stokes boundary layer; solutions of (6) 
appropriate to the boundary conditions are found in $3,  and supplemented in $4 by 
calculation of the attached Stokes boundary layers and the dissipation therein. 
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Next, rule (c) implies that energy travels at  a velocity U given by (10) and (11)  as 

an equation indicating that group velocity tends to zero like the square of the 
distance from x = x,. This allows energy an unlimited time U-' dx to reach x = x, ; 
in practice, an unlimited time for dissipation to reduce it to zero (see below). 

Lastly, rule ( d )  shows that the solution's relative error does not increase, despite 
the unlimited growth in k, but remains of order the square of the bounded quantity 

(14) 

The approximation's continuing accuracy near x = x, is further checked in $ 4  by 
comparison with an exact solution. 

k-2 akpx = - s'(x)/(~pw2). 

Now the wave energy (potential plus kinetic) per unit length can be written 

E = $(x) (e) ++(Apk-' +B)  ( (aC/at ) * )  (15) 

as just indicated in a footnote ; with, moreover, the relationship (9) making equal the 
two terms on the right-hand side and so offering 'either term doubled' as a simplified 
form of E.  Using the first term for this purpose and multiplying it by the group 
velocity given by (10) or (13), we obtain the energy flow rate in alternative forms as 

(16) UE = &4pw3 k- ' ( s )  = (2Ap~)- '  [s(x)-s(x,)]~ (e).  
In the absence of dissipation, this energy flow UE would remain constant, implying 

that (e) increases like k2 and the wave amplitude like k (see (1 1) above) as x -+ z,. 
It is noteworthy also that the kinetic energy term 

+(A&' +B)  w2 (S) 
in (15) is a sum of fluid and solid kinetic energies, which both increase, but like k and 
k2 respectively - the former more gradually because the energy's penetration into the 
fluid is falling like k-'. 

With D as the proportional rate of energy dissipation per unit time (to be 
calculated in $4 and Appendix A),  the proportional diminution in energy flow 
between xo and x is 

an equation that may perhaps be considered self-evident since energy traverses a 
distance dx in time dx/U; or, alternatively, demonstrated by solving the differential 
equation 

(19) 

obtained by identifying the rate of energy dissipation in unit length with the 
downward gradient of energy flow. Evidently the right-hand side of (18) must 
become extremely small wherever (13) makes U fall to zero in such a way that the 
integral in (18) is increasing without limit. 

Space was saved in this section by a concentration on the waves where they have 
become quite short (k 2 3 mm-l); however, readers will find an account of the 
complete progress of the waves to their characteristic place from their origin at the 
cochlear base in the review by Lighthill (1991) and references therein. The analogy 
to water waves is sustained in that review ; in the region near the base, for example, 

DE = - d( UE)/dx 
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cochlear travelling waves prove to be non-dispersive and very closely analogous to 
‘long ’ waves in water channels. 

Lighthill (1991) also surveys extensive recent evidence to the effect that, a t  low 
sound levels, a physiologically ‘ active ’ process (utilizing metabolic energy) applies a 
process of amplification by positive feedback to cochlear travelling waves. Such a 
process, which appears to involve the outer hair cells in stimulated vibration a t  audio- 
frequencies, would (as explained in $3  below) generate not only forward travelling 
waves, which could reinforce those whose energy is already ‘piling up’ a t  the 
characteristic place, but also backward travelling waves. The fact that these are 
observed (Kemp 1978, 1980), and can be shown pharmacologically to originate in an 
‘active’ process, is part of the evidence for such a feedback phenomenon; which, 
furthermore, is consistent with electrophysiological observations on outer hair cells 
(Ashmore 1987, 1989), and explains too the very considerable peak amplitude 
enhancement observed (Sellick, Patuzzi & Johnstone 1982) when incident sound 
levels are reduced from the 70 dB of figure 1 to relatively low levels (such as 0 to 
30 dB) around the threshold of hearing. Sellick et al. (1982) noted moreover that 
whenever (with the benefits of such enhancement) the velocity amplitude for basilar 
membrane vibration in the guineapig cochlea attained about 0.04 mm s-l, neural 
activity was stimulated by inner hair cells. 

Cochlear hair cells, indeed, are highly differentiated in mammals, with outer hair 
cells now believed responsible for the amplification function just described, and inner 
hair cells specializing in the transduction function ; that is, conversion of an acoustic 
signal into neural activity in the attached auditory nerve fibres. There continues to 
be much uncertainty about the mechanism of transduction in mammalian inner hair 
cells, but recent observations (K. A. I. Flock 1988, personal communication) to the 
effect that sustained neural activity is generated even by a steady deflection of their 
stereocilia suggest that it may be of value to  estimate, as is attempted in this paper 
($$f3-9), the magnitude of such mean streaming motions as may result from the 
viscous dissipation of cochlear travelling waves. 

3. Local distribution of wave motions around the basilar membrane 
At a position in the cochlea where the wavenumber is k, the local wave motions 

outside Stokes boundary layers are closely approximated ($2) by solutions of 
equation (6) compatible with boundary conditions on the basilar membrane. Now (6) 
has the so-called fundamental solution 

- (2x)-l KO( k r ) ,  (20) 
representing for motions of wavenumber k (assumed positive?) the velocity potential 
q5 a t  a distance r from a source of unit strength. Here, KO is the modified Bessel 
function of the second kind, plotted in figure 2 together with its asymptotic 
tendencies (Watson 1944, with y as Euler’s constant 0.577) 

K,,(kr) --log ($kr)-y  as kr+0 ,  and - e-”r(x/2kr)f as kr+m. (21) 

Here, the first result makes the solution (20) behave for small kr like the potential, 
(2x)-’ log r + constant, of a simple line source satisfying the two-dimensional Laplace 
equation; but the second result restricts to a distance hardly more than k-’ the 
penetration of the source-like motions into the external fluid. 

t By contrast, if k were negative (representing waves travelling towards the base), the 
appropriate solution would be - (2n) -1K, , (~k~r ) ;  and, similarly, (21), (24), (25), (27) and (28) below 
would become valid with k either positive or negative if k were replaced by Ikl. 
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FIGURE 2. The solid line plots the modified Bessel function K,(kr) that appears in the fundamental 
solution (20) to equation (6), while the broken lines plot its asymptotic tendencies (21) for small and 
large kr respectively. 

These two properties allow us to use the fundamental solution (20)  to obtain a good 
approximation to the fluid motions generated by given vibrations of the basilar 
membrane. Admittedly, current knowledge of the detailed mechanical properties of 
the basilar membrane in vivo does not extend to an identification of the precise shape 
of its principal vibrational bending mode. Fortunately, however, we can obtain 
results for an arbitrarily assumed bending mode ; finding, furthermore, that these 
results are not critically dependent on the mode chosen. 

In the plane (y, z )  of a cochlear cross-section where the basilar membrane extends 
from z = a to z = b on the axis y = 0, its vibrations with frequency o and local 
wavenumber k may produce a local velocity distribution of the form 

a$&= V ( Z )  on y =  0, U < Z  < b,  (22)  

where V(a)  = V(b)  = 0 and where the complex exponential factor ei(wt-lcz) ha s been 
suppressed. The corresponding potential 4 on the side y > 0 can be written using the 
source-like solution (20) in terms of a linear distribution of sources over the strip 
a < z < b with source strength 

2V(z)  dz in each small interval dz, (23)  

for the following reasons : 
(i) the potential of this source distribution (23)  satisfies the boundary condition on 

the side y > 0 because it yields a volume flow V ( z )  dz into that side (half the total 
output of the source) from the interval dz; 

(ii) admittedly, this same source distribution (23) would yield an identical volume 
flow V ( z )  dz into the side y < 0 where, on the other hand, no use is made of the 
potential associated with (23) ; 

(iii) for the side y < 0, in fact, the corresponding fluid motion is that associated 
with a source strength -2V(z) dz (there is, of course, no continuity between the fluid 
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motions on the two sides of the basilar membrane - whose vibrations are, indeed, 
driven by the difference between their pressure distributions) ; 

(iv) the motions associated with each source (23) are directed radially outwards 
from it, so that they cannot interfere with the boundary condition (22) being satisfied 
a t  other points of the strip; and, lastly, 

(v) the limited penetration of the source potential (20) into the fluid implies that 
it also avoids significantly interfering with conditions to  be satisfied at the cochlear 
cross-section's rigid boundaries. 

Accordingly, in the region specified in $2 for study in this paper (with wavenumber 
k 2 3 mm-'), we may utilize a t  points (y, z )  with y > 0 a potential given by the 
distribution (23) of sources (20) as 

Among inferences from (24), the most useful of all ~ because it determines both the 
fluid velocity immediately outside the Stokes boundary layer and, with (22), the 
kinetic energy of the fluid motions - is a specification of the limit of 6 as y -+ 0 (from 
above) as 

W 

($ )$ / -o  = -.-l/-, ~(z)K,(kIZ-- l )dZ;  (25) 

where the integral's limits can be redesignated as shown if, by convention, V ( 2 )  is 
taken as zero outside a < 2 d b (being assumed, moreover, to  join smoothly on to 
that value a t  the ends of the strip). The integral (25) can be asymptotically estimated 
by expanding V ( 2 )  in a Taylor series 

m ( z - z ) m  
V ( Z )  = c V(m)(Z)-  

m-0 m !  

of which only the terms with m even (say, m = 2n) make any contribution to the 
integral (25). Using the expression (Watson 1944, p. 388) 

we can derive the asymptotic behaviour of (25) as 

($ )u-o  - - ~ - ' V ( Z ) - ~ ~ " V " ( Z ) - ~ ~ " V " ' ( ~ ) -  . . a .  (28) 

Here the leading term, which is 

4 - -k-'V(z),  yielding a$/ax = -ik$ - +iV(z), a$/& - -k -  'V  '( z) (29) 

as local velocity components - along with (22) for a$/ay -just outside the Stokes 
boundary layer, may often be a close enough approximation. Then the x- and y- 
components of velocity, with their equal amplitudes V(z )  and 90' phase difference, 
represent a classical circular motion (as in waves on deep water) about some axis 
z = constant. For large enough k this dominates the fluid motions in the 
neighbourhood of the basilar membrane, motions which we shall then describe as 
'locally two-dimensional ' (albeit with a z-dependent amplitude). When k is not so 
large, however, the presence of a significant z-component of velocity - k-' V ( Z )  tilts 
the plane of motion through an angle tan-'(k-' V / V )  ; and there are possibilities of 
additional terms in the asymptotic series (28) becoming significant. 
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FIQURE 3. The trend to locally two-dimensional motion near the ‘resonance’ position x = x, is 
illustrated, using the first two terms of the asymptotic series (28), by showing the amplitudes of 
a$/ax (horizontal lines) and a$/& (vertical lines) at  six locations with values of e ( r ) - a @ , )  in the 
ratios (left to right) 6:5:4:3:2:1. According to (11) and (16), the wavenumber k changes as the 
reciprocal of these differences, and so does the scale of V(z) in the region before the onset of 
substantial energy dissipation. In this diagram a somewhat arbitrary choice of principal bending 
mode (distribution of V(z)  across the width of the basilar membrane - see the right-hand curve) was 
unavoidably made. 

Figure 3 shows the trend towards a ‘locally two-dimensional’ motion, as k 
increases in accordance with (1 i),  for a somewhat arbitrarily chosen bending mode 
(to whose shape, however, such results are not particularly sensitive), by indicating 
the direction and amplitude of the tangential fluid velocities just outside the Stokes 
boundary layer, as derived from the first two terms in the asymptotic series (28). It 
is in the right-hand region (the region where both k and ‘v are largest) that streaming 
motions are most likely to be significant, which is why streaming will first be 
calculated (Q 6) for locally two-dimensional motions - although generalized results for 
three-dimensional motions are given in $7. 

The excess or ‘transient ’ pressure may be written 

- p a$/at = -pi@, (30) 

which is in its expected ratio pok-’ = pc to the fluid velocity component a$/ax in the 
direction of propagation. An excess pressure equal and opposite to (30) acts on the 
side 9 < 0 of the basilar membrane, whose y-component of velocity V(z ) ,  then, is 
excited by a pressure difference + 2piw$. 

In  the asymptotic limit ( 2 9 )  this is ( - 2 p k - l )  times the local acceleration io‘v(z). 
From the standpoint of the theory of elasticity we can, in this limit, describe the 
basilar membrane’s principal bending mode V(z)  as that which would be associated 
with ‘free vibrations’ such as are simply resisted by inertial forces proportional to 
local acceleration, where, however, the effective mass per unit area of basilar 
membrane is locally augmented by a fluid inertia term 2pk-l. 

At a time such as t = 0 when the complex exponential suppressed in (22) takes the 
value 1, the kinetic energy of the fluid in the region y > 0 can be derived, by use of 
a general theorem of irrotational-flow theory, as 

(31) 
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per unit length of cochlea, and the total kinetic energy of fluid (in the regions 
y > 0 and y < 0) is twice as much. This, on the approximation (29), gives a value 

which, once again, is consistent with the effective mass per unit area of basilar 
membrane being directly augmented by a fluid inertia term 2pk-l. 

But improvements to the expression (32) for kinetic energy can be calculated by 
using also the second term in the asymptotic series (28). In this case, after an 
integration by parts, we obtain 

for the kinetic energy of fluid a t  a time such as t = 0. This completely general 
indication (33) of a reduction below the asymptotic value (32) as k decreases is 
consistent with all calculations of fluid inertia that  have been made in particular 
cases (Lighthill 1981, 1983). 

In  the notation of $2 with the fluid kinetic energy as 

;(aC/at)*Apk-i, (34) 

where 5 is the maximum displacement of the basilar membrane, we can see that 
a[ /at  = V,,, (the largest value of V )  and therefore that 

This result is, of course, consistent with the idea ($2) that  A would be comparable 
with the width (b-) of the basilar membrane. 

The corresponding kinetic energy of the basilar membrane itself and of other solid 
material attached to it -with, say, a combined mass per unit area M(z)  -may be 
written 

J;%(z) [V(z)I2 dz. (36) 

This takes, as in $2, the form l$(aLJat)z provided that 

B = V;', l M ( z )  [V(z)I2 dz. (37) 

Similarly, in order that the potential energy shall take the form &8(x)e,  we find that 
s(x)  must take the form 

44 = V;ix J-+, 2) [V(z)I2 dz, (38) 

where S(x,z) is the ratio of restoring force per unit area to  basilar-membrane 
displacement. 

We now conclude this section with a brief analysis of the consequences of basilar- 
membrane forcing by vibrations of outer hair cells. Such forcing may be expected to 
be effective in augmenting the principal mode V(z )  of vibration of the basilar 
membrane provided that the z-distribution of force applied to the membrane has a 
normal-mode expansion (in terms of basilar-membrane vibrational modes) with a 
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FIQURE 4. Illustrating how the principal bending mode used in figure 3 would be excited 
preferentially by in-phase vibrations of outer hair cells because all are located around this mode's 
maximum (whereas higher bending modes would have nodes in the neighbourhood of at least one 
of them). 

rather substantial principal-mode component. We immediately verify this sugges- 
tion, whose importance lies in the fact that, at a cross-section where the three outer 
hair cells vibrate in phase (figure 4), their principal-mode component is expected to 
dominate. 

For pure-tone forcing 
eiWt f(x, z )  (39) 

in the y-direction, with amplitude f(z, z )  per unit area, we write 

so that F,(k, z )  is the Fourier transform offwith respect to 2. On substitution in (39), 
equation (40) gives a distribution of forcing terms which, on suppression of the 
complex exponential ei(+lcz) as in the earlier part of this section, take the form 

Fi(k, 2). (41) 
Now, in the region (near the characteristic place) where forcing is expected to be 

important, the potential 9 may be approximated by its locally two-dimensional form 
(29) ; then that difference in the pressure (30) which acts alongside the forcing (41) to 
generate the basilar membrane's motions is 

-2piw lkl-'V(z), (42) 

an equation whose validity (see footnote at  the beginning of $3) has been made 
independent of the sign of k through its replacement by Ikl. The forcing terms (41) 
and (42) taken together must generate the motion of the basilar membrane and 
attached solid material, with mass M(z)  and local stiffness S(x,  z),  giving 

M(z)iwV(z)+S(x, z )  (iw)-'V(z) = Fl(k, z)-2piw Ikl-'V(z). (43) 
Moreover, (43) after multiplication by V(z )  and integration from a to b can be 
simplified, using (35), (37) and (38), to 
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and iwc = V,,, (as before), the forcing equation becomes 

Equation (46) confirms both that unforced waves satisfy the dispersion equation 
( l l ) ,  and that forcing of the principal mode V ( z )  depends on F ( k ) ,  whose expression 
(45) relates i t  to the principal-mode component of Fl(k, 2). 

In addition to those ‘unforced’ waves that travel from the base of the cochlea 
towards their characteristic place, the ‘forced ’ waves newly generated by the forcing 
(39) may be propagated either in the same or in the opposite direction. A very 
familiar technique derives these forced waves in a simple homogeneous-system case 
with s constant. Then, for forcing as in (39) and (40) by a continuous distribution of 
terms in ei(ot-kz), equation (46) specifies the resulting basilar-membrane vibration as 

[S(X)--’(A~I~~-’+B)]~ = F(k). (46) 

F ( k )  e-ikx dk s -,s-~’(ApIkl-l+B)’ 
5 = eiwt (47 ) 

and the waves generated may be derived by Cauchy’s theorem in terms of the poles 
of the integrand (values of k for which the denominator in (47) vanishes) satisfying 
‘the radiation condition ’ that energy must travel outwards from the source region 
(see Lighthill 1978b, for example). 

The pole + k, (the positive wavenumber for which the dispersion relationship (1 1) 
is satisfied for s constant) yields waves travelling away from the source region in the 
apical direction (z increasing), specified by Cauchy ’s theorem as 

(48) 5 = - 27ci ei(ut-’c a 5 ) kiF(k,)/(u2Ap); 

here, the factor ki  shows us that forcing produces responses which are resonantly 
intensified near the characteristic place (where the dispersion relationship makes the 
wavenumber large). On the other hand, the negative pole - k, yields waves travelling 
away form the source region in the basal direction (x decreasing), specified as 

(49) c = - 2xi ei(wt+k 0 5 ) k i p (  - ko)/(u2Ap). 

These latter waves (49) may be described as ‘evoked otoacoustic emissions’: 
basally travelling waves generated in response to an acoustic signal when it 
stimulates vibrations of outer hair cells. On this simplified theory (with s taken as 
constant), the entire difference between the amplitudes of the waves (48) travelling 
apically and (49) travelling basally lies in the factors F(k,) and F(  - k,) respectively. 
These are important differences, however, which throw light on why only certain 
regions of the cochlea generate evoked otoacoustic emissions of significant 
magnitude. 

Indeed, wherever outer hair cells are organized so that each responds to the 
ambient travelling-wave signal, proportional to ei(wt-Loz), with approximately the 
same phase lag, then the value of k for which (40) defines a substantial Fourier 
transform Fl(k,z),  so that (45) similarly makes F ( k )  substantial, must be centred 
around k = k,. Under such circumstances, the apically travelling forced wave (48) 
with the P(k,) factor must dominate, and the basally travelling forced wave (49) 
must (owing to the F(  - k,) factor) be relatively insignificant. 

By contrast, imperfections of organizations of outer-hair-cell responses can inhibit 
any such concentration of substantial values of F ( k )  around k = k,. Accordingly, in 
any region where such imperfections occur, F( - k,) may be significant so that evoked 
otoacoustic emissions may be substantial, with a rate (16) of energy flow in the 
basally travelling wave equal to 
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The preliminary over-simplified description of cochlear forced waves which has 
just been derived for the homogeneous-system case 8 = constant can very crudely be 
extended to the real case of a cochlea with s (2 )  variable by the usual assumptions of 
high-frequency asymptotics. Then as the wave (49) travels basally, its originally 
generated energy flow (50) should proceed without significant change as the 
wavenumber k falls gradually from its value k, near the position of forcing to those 
very low values that it takes near the base, where in turn that energy flow might be 
assumed to be transmitted through the middle ear’s linkage mechanism into the 
outer ear canal and observed as an otoacoustic emission. 

For the apically travelling wave, furthermore, a similar approach might perhaps 
be attempted, but for the fact that this wave propagates alongside the main 
‘ unforced ’ wave travelling from the base towards its characteristic place. The forced 
wave, given by (48) on the over-simplified assumption s = constant, must of course 
undergo increases in the wavenumber k above the value k,  taken near the position 
of forcing, while being supplemented by an unforced wave undergoing the same 
changes. Provided that they are approximately in phase, they should reinforce one 
another. No detailed attempt to analyse this process is made here, however, both 
because details of the forcing applied by outer hair cells remain unknown, and 
because the present paper is one that concentrates its attention upon mean 
streaming motions. In the streaming context, the relevant property of the wave 
amplification by positive feedback associated with outer-hair-cell forcing is that it 
may allow amplitude-dependent streaming motions, such as may be given for 
example by (l), to become significant near the characteristic place. 

4. Locally two-dimensional motions and their Stokes boundary layers 
Figure 3 illustrates the strong tendency, associated with unlimited increase in the 

wavenumber k as the characteristic place is approached, for cochlear travelling 
waves to become locally two-dimensional. We now consider further, both for 
‘unforced ’ and for ‘forced ’ waves, the nature of such locally two-dimensional 
motions, and of the related thin Stokes boundary layers - attached to the basilar 
membrane -within which all vorticity fluctuations are expected to be confined. 

In  any locally two-dimensional flow the irrotational motions outside the Stokes 
boundary layer satisfy the simplified form 

a2$/ay2-k2$ = o (51) 

a$/ay = V on y = 0 (for V constant) (52) 

of (6). The correspondingly simplified boundary condition 

represents the local form of (22) for a particular value of z (with the complex 
exponential ei(ot-Lz) again suppressed). 

On the side y > 0 of the basilar membrane, (51) subject to the boundary condition 
(52) has the solution 

which, in addition, may be shown to be the asymptotic form of (25) for large k.  The 
corresponding x-velocity, 

satisfies the local form of condition (29) on y = 0 and, in combination with a 
y-velocity 

$ = -k-lVe-@, (53) 

(54) u = a$/ax = +iVe-Lg, 

v = a$/ay = Ve-Ic~, (55) 
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describes the well-known circular motions of particles characteristic of waves on deep 
water (Lighthill 19783, figure 50) as well as of cochlear travelling waves near their 
characteristic place (Lighthill 1981, figure 4a). 

Before proceeding with any further use of these locally two-dimensional solutions 
for particular large values of the wavenumber k - solutions which, of course, the 
principles (a)-(d) of high-frequency asymptotics ($2) allow us to apply to travelling 
waves of continuously varying wavenumber - we may reasonably ask for an 
independent verification of the correctness of such an approach. An interesting exact 
solution of the two-dimensional Laplace equation conveniently provides this in the 
case of unforced (and undissipated) waves near the characteristic place. 

This is a region where (1  1 )  leads us to expect a wavenumber increase like 

k - N(x, -x)-l, where N = A p d  [ -d(x,)]-l (56) 

is a non-dimensional constant. Accordingly, the definition (4) of wavenumber as rate 
of increase of phase lag of basilar-membrane oscillations with distance x from the 
base suggests, asymptotically, that 

(57) 

These properties are completely consistent with those of a simple exact solution of 

phase lag - - N  log ( 2 , - x )  + constant, 

while (16) makes us expect the wave amplitude to increase like the wavenumber. 

the Laplace equation for two-dimensional irrotational flow : 

$ = Cei"t(x,-x+iy)", (58) 

(59) 

&$/ax = -N$(x,-x)-l and a$/ay = -iV$(x,--~)-~, (60) 

whose value on the basilar membrane y = 0 may be written 

C exp {i[wt + N  log (2, - x)]} 

in exact agreement with (57). The velocity components on the basilar membrane are 

confirming similarly that their amplitudes vary like (z, - x)-l as does k, and also that 
their phases differ by 90" as do those of the expressions (54) and (55) for the 
approximate solution (53). Finally, that approximate solution agrees with the form 
of (58) for small values of y/(x,--2) when it can be written 

$ = ($)u-o {exp [iy(xr-x)-'lIiN = ($),-oe-"yt (61) 

with k given by its asymptotic form (56). 
These are valuable confirmations of the conclusions of $2 that principles (a)-(d) 

give a good account of cochlear travelling waves (and, in particular, that principle 
(d )  assures their accuracy even where k becomes very large); checking these 
conclusions explicitly for undissipated waves by comparison with an exact solution 
which (because the waves are undissipated) builds up at x, = x, y = 0 to a formidable 
'singularity'. Confirmation in this case encourages us to use those principles also in 
other, more realistic cases with viscous dissipation (and indeed with forcing), 
founding our analysis on the continued use of locally two-dimensional solutions. 

Viscous dissipation takes place, of course, in thin Stokes boundary layers 
incorporating that vorticity which, after being generated at the solid surface, diffuses 
away from it with diffusivity ,u/p = v (the kinematic viscosity). Vorticity generation 
arises because, although the boundary condition (52) specifying the y-velocity on the 
basilar membrane is sufficient by itself to determine a unique solution (53) of the 
equation (51) governing irrotational flow, nevertheless the fluid motions must 
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FIGURE 5. The Stokes boundary layer: an oscillatory motion parallel to a solid boundary is 
modified at small distances y from the wall by the factor given in curly brackets in (63). whose 
real and imaginary parts are the solid line (with asymptote 1, the dotted line) and the broken line, 
respectively. Note how the vorticity (gradient of the velocity distribution) shows a phase lag which 
increases with distance from the boundary. 

comply also with a second boundary condition constraining the x-component of 
velocity to be zero on the solid surface. Any discontinuity between the irrotational- 
flow value (54) of that z-velocity and this true value (zero) constitutes, of course, a 
vortex sheet ; and one whose strength oscillates with frequency w while the vorticity 
in the sheet diffuses outwards. 

Oscillatory quantities subject to such diffusion acquire a characteristic distribution 
proportional to 

which, with distance from the boundary, falls off exponentially in magnitude while 
its phase lag continually increases. The general character of velocity distributions 
within Stokes layers (figure 5 )  is consistent with these suggestions that any vorticity 
remaining at relatively larger distances from the solid surface has been generated at 
relatively earlier phases of the cycle. 

In the present problem, with the z-velocity (54) just outside the thin boundary 
layer given as u = iV, its distribution across the boundary layer takes the form 

exp [- y(iw/V)+l, (62) 

u = iV{1- exp [ - y(iw/u)+l} (63) 
of a rotational motion with the required distribution (62) of vorticity which allows 
the boundary condition u = 0 on y = 0 to be satisfied. The corresponding y-velocity 
v, with its boundary value V on y = 0, is derived from (63) by the equation of 
continuity as 

v = ~ [ i  + (1 - exp [ - y(iw/u);]) k(u/iw)tl. (64) 
The rate of energy dissipation d per unit area of boundary layer takes the form 

where the quantity in brackets is the mean-square shear rate in the velocity 
distribution (63). The integral (65) is readily evaluated as 

d = P V " ( + U ) + .  (66) 
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For cochlear travelling waves, of course, this indicates the energy dissipation rate in 
either of the two boundary layers attached to the basilar membrane, and the overall 
rate is twice as much. 

All the standard boundary-layer approximations have been used in the above 
determination of the velocity distributions (63) and (64) within the Stokes layer and 
of the energy dissipation rate (66). These approximations require, of course, that the 
boundary-layer scale ( v / w ) i  is small compared with scale k-' of the external 
irrotational flow, or in other words that the non-dimensional wavenumber 

K = k(V/w); (67) 
is small. They additionally necessitate meticulous care in making use, along classical 
lines, of those Stokes-layer distributions against the background of the external 
irrotational motions (54) and (55). Several such calculations are made in 995 and 6. 

The approach used could be made more rigorous, of course, by the method of 
matched asymptotic expansions. A preferable alternative, here adopted in 
Appendices A, B and C, gives a rigorous verification of all our results for small K and 
also extends them to arbitrarily chosen values of K .  For example, Appendix A 
determines uniformly valid velocity fields for all values of K and calculates the exact 
energy dissipation rate A ,  checking that, for K small, A is indeed given to good 
approximation by its Stokes-layer value (66). 

5. The distinction between Euler and Lagrange mean flows 
The rest of this paper is concerned with estimating the mean streaming motions 

generated by cochlear travelling waves. It must be recognized a t  the outset, 
therefore, that two alternative definitions of mean motion need to be carefully 
distinguished. To this end, subscripts E and L are used to designate, respectively, the 
Euler mean motion (average velocity a t  a fixed point in space) and the Lagrange 
mean motion (average velocity for a particle of fluid). 

The importance of this distinction has been stressed by McIntyre (see for example 
Andrews & McIntyre 1978), so it is appropriate to use the subscript M for the 
difference (3) between the Lagrange mean velocity and the Euler mean velocity. The 
present section is devoted exclusively to a calculation of this difference for the locally 
two-dimensional motions of $4. 

In  the waves (53) outside the Stokes boundary layer - identical to waves on deep 
water - the difference takes a well-established value 

uM = kw-1Pe-2kg, vM = 0 (68) 
known as the Stokes drift. Integrating (68) from 0 to co, we obtain the net Stokes 
drift as 

(69) 

Here the upper limit co really represents the extent of penetration (of order k-l) of 
wave motions into the fluid, and the integral (69) gives the net mass flow (per unit 
width of the basilar membrane, on the side y > 0) associated with the waves outside 
the Stokes layer in any case when the Euler mean motion is zero. 

The results (68) are obtained for the oscillatory motions (54) and (55) -where the 
complex exponential ei(wt-kz) has been suppressed so that the motions as they stand 
have zero Euler mean - by writing down oscillatory particle displacements 8x and Sy 

(70) 
as 

fi uM dy = &J-~P. 

Sx = u/(iw), Sy = v/(iw) 
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and determining the Lagrange mean velocity uL for a particle as 

uL = ((au/ax) ax+ (au/ay) sy>. (71) 

Then, using the rule that the average value of the product of two quantities specified 
as the real parts of complex multiples of eiWt is half the real part of the product of one 
quantity with the complex conjugate of the other, we can calculate (71) as 

t Re [( - ik) ua/( - iw) - k u ~ / (  - iw)] = t Re [kw-'P eczeY+ k w - l P  e-2ku], (72) 

while a similar calculation of vL shows i t  to be zero - a result which, indeed, follows 
€or arbitrary waveform from the continuity equation av/ay = iku. Thus, when the 
velocity field is taken to have zero Euler mean, the Lagrange mean is found to have 
the value (68), which, furthermore, becomes the difference (uM, w M )  between the 
Lagrange and Euler means when the same mean velocity field (uE, wE) as a function 
of position in space is added on to both. 

A similar calculation inside the Stokes boundary layer uses the same general 
results (70) and (71) but with (63) and (64) specifying u and v. Then the rule quoted 
after (71) gives 

uy = 4 Re [( -ik) ua/( -iw) + (au/ay)v/( -iw)] 

ko-'Pll-exp [-y(iw/u)i]lz+ iVexp [-y(iw/u)i] 

i+ ( l - exp  [-y(-iw/u)i])k (73) 

The right-hand side of (73) is interesting because every term but one exhibits 
exactly the same scaling (like kw- 'P)  as the value (68) of uM outside the boundary 
layer. Specifically, every term but one can be written as kw-lV times a function of 
the Stokes-layer coordinate y ( w / u ) i ,  and these terms all taken together change 
smoothly from zero at y = 0 to a value at the edge of the layer of k o - l P  consistent 
with the value of (68) for small y. 

The exceptional term in (73) -with very strongly contrasting properties - is the 
term 

w- 'P  exp [ - y(iw/u)i] (74) 

arising from the element 1 within the last large square bracket. This term takes a 
negative value at  the wall, 

which represents the actual value of uM because the other terms add up to zero for 
y = 0. Furthermore, the contribution to $:uMdy made by this term (74) is 

-$-'P, (76) 
which exactly cancels out the net Stokes drift (69). Such cancellation is rendered 
possible by the enhanced magnitude of the reverse flows in the Stokes layer, with 
their peak value (75) reflecting the maximum transverse displacements V/(io) a t  the 
wall acting on the maximum gradient of the Stokes-layer velocity distribution (63). 

In summary, one very famous property of waves on deep water -the net Stokes 
drift of particles in the direction of wave propagation -is nullified for cochlear 

19 FLM 239 
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FIQURE 6. Illustrating how the difference uy between the Lagrange and Euler mean flows makes 
a transition (equation (B 13): solid line) between (68) for the Stokes drift (broken line) outside the 
Stokes boundary layer and a very different form (74) within i t  (dotted line), in such a way that (79) 
holds (zero net mass flow). Here, the non-dimensional wavenumber (67) has been taken as K = 0.07. 

travelling waves by an equal and opposite net flow within the Stokes boundary layer. 
The above analysis, to be sure, suggests only that they cancel to first order on the 
usual boundary-layer approximations. Appendix B demonstrates, however, that the 
cancelling is exact for all values of K ,  the non-dimensional wavenumber (67), and that 
this exact cancellation persists even when the wavenumber k takes complex values 
representing waves with spatial growth or decay. 

I am indebted to Dr M. E. McIntyre for the following general argument explaining 
why the cancellation must be exact. The expression (71) for uL can be rewritten as 
a divergence 

because the vector field 6r = (6x, 6y) given by (70) is necessarily solenoidal. Now the 
divergence theorem 

uL = a(usx)/ax+ a(usy)/ay (77) 

n 

J v u L d V =  J (udr).ndS 
av 

applied to the volume V between two closely adjacent parallel planes x = constant 
includes on the right-hand side 

(a )  zero contributions over the planes themselves, where (u6r) e n  = +_ (udx) with 
this mean value (udx) vanishing because u and ax, by (70),  are 90" out of phase; 

( b )  another zero contribution from the basilar membrane itself where u = 0;  and 
(c) just one more contribution, also zero, from a boundary at  great distances, where 

disturbances tend to zero. 
Therefore the left-hand side of (78) is also zero, which implies a zero integral of uL 

with respect to y. 
These conclusions much reduce the potential importance of any Stokes-drift 

element for acoustic streaming in the cochlea. Figure 6 indicates how apically 
directed particle movements (designated +, with uM > 0) are balanced by basally 
directed movements (designated - , with uy < 0). The solid line represents the exact 
calculation of Appendix B, satisfying 
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while the broken and dotted lines represent the approximate forms of uM outside the 
boundary layer (broken line) and inside it. 

There is just one further context in which the distinction between Euler and 
Lagrange mean flows is important. The boundary condition on the mean x-velocity 
a t  the solid boundary y = 0 takes the form uL = 0 because the x-velocity of a fluid 
particle on the vibrating basilar membrane must be zero a t  all times - so that its 
mean uL is zero. The boundary condition on uE can therefore be written down, using 
(751, as 

(80) 
v 

(8vw)i’  
(UE),-O = - (%Ay-o = +- 

a form used in $6 for the determination of mean flows forced by gradients of 
Reynolds stresses. 

6. Forcing by Reynolds stresses 
Although, in cochlear travelling waves, excess mass flows are locally balanced, 

exhibiting equal and opposite flows outside and inside the Stokes boundary layer 
which (together) are rather ineffective for generating mean streaming motions, no 
such local balance appears in the (more powerful) excess momentum flows. Their 
forcing effects, operative only inside the Stokes layer, are studied in $6 for the locally 
two-dimensional motions of $4. 

Reynolds (1896) pointed out tha t  the mean rate of momentum flow across unit 
area is effectively a force per unit area; that is, a stress - now known as the Reynolds 
stress. In  two-dimensional motions, for example, the Reynolds stress component 
p (uv) acts as a shear stress, transferring x-momentum in the y-direction (across unit 
area) ; and the consequent rate of increase in x-momentum (inflow minus outflow) per 
unit volume is 

being able to generate what we shall call ‘shear-stress streaming’. 
In  addition, a Reynolds stress component p(u2)  acts as a normal stress, 

transferring x-momentum in the x-direction ; so that a resulting rate of increase in x- 
momentum per unit volume, 

may generate ‘normal-stress streaming ’. However, in the special case of travelling 
waves whose amplitude V is independent of x, the normal stress p (d) must also be 
independent of x so that the associated forcing (82) is zero. Accordingly, in this 
special case (which we analyse first), only shear-stress streaming is found. 

Outside the boundary layer, moreover, the velocity components u and v are given 
by (54) and (55) which are 90’ out of phase, so that the Reynolds shear stress p (uv) 
is zero. Forcing occurs, therefore, only in the thin Stokes boundary layer, where it 
generates an Euler mean flow in the form of a thin vortex sheet, allowing a steep 
change in the Euler mean velocity uE from its value at y = 0 given by the boundary 
condition (80) to its value a t  the edge of the Stokes layer (where forcing disappears). 

At any particular point within the Stokes layer, the rate p(uv )  of inflow of 
momentum (per unit area) might in principle be partly balanced by an outflow 
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p (uw) ,~~,  at the edge of the layer; which, although it vanishes in the inviscid limit, 
may be non-zero to the next approximation of boundary-layer theory. Then the net 
inflow p (uv) - p  (uw) ,~~ ,  of momentum into the intervening fluid must be balanced 
by the viscous stress ,uauE/ay acting within the steady Euler-mean-flow vortex sheet. 
This gives a very simple differential equation 

for the Euler mean flow, and the solution satisfying the boundary condition (80) can 
be written 

It is above all the value of uE a t  the edge of the Stokes layer which represents the 
net effect of shear stress forcing in producing a flow external to the layer. This value 
may be written 

with the upper limit co representing the edge of the layer (where the integrand is 
zero). Essentially, us represents a boundary value (often described in the acoustic- 
streaming literature as an effective ' slip velocity ') for that low-Reynolds-number 
Euler mean motion outside the boundary layer which is given initial study in $9 
below. 

We calculate us using (63) and (64) for the velocity components u and w inside the 
Stokes layer; then the rule quoted after (71) gives 

iV(1-exp [- y(iw/v)i]) V l + ( l - e x p  [-y(-iw/v)i]) k 

Re ( -i exp [ - y(iw/v)i]) - I 1 - exp [ - y(iw/v)i] l 2  k 

Then the integral term in (85) can be written as the sum of two terms, 

of which the latter comes from the last term within the curly brackets of (86); 
whereas the former comes from the first, and hence from the initial term 1 inside the 
square brackets of (64). 

Equation (87) implies that the shear-stress streaming (85) takes a value 

us = aP kw-' (88) 

identical with that calculated in classical acoustic-streaming theory for the 
interaction of travelling sound waves with a rigid wall. At first sight this may seem 
quite a surprising ' coincidence ', because cochlear travelling waves - with the wall 
vibrating, and with particles in circular motions outside the Stokes layer - are so 
different from plane sound waves. 

Inside the Stokes layer, however, the velocity components (63) and (64) differ from 
those in sound waves propagating along a rigid wall in but one respect: their 
inclusion in (64) of the first term, 1, in square brackets. This produces (55) the 
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additional term (74) in u,, leading to the boundary condition (80) on uE. Now we see 
also that the same term generates on the right-hand side of (87) an exactly cancelling 
expression! - whilst the other terms, present in both theories, lead to the same 
formula (88) for us in each and thus to the apparent coincidence. 

The same considerations, analogously, make quite unnecessary any separate 
calculation of the contribution to us, in motions when the velocity amplitude V may 
be varying with x, from the normal-stress forcing (82), since this depends solely on 
the velocity component u -with the same Stokes-layer distribution in both theories. 
Exactly as in classical acoustic-streaming theory, then, normal-stress forcing makes 
a contribution 

to us; see also Appendix C for a comprehensive calculation which derives without 
making any boundary-layer approximation the corresponding result for all values of 
K ,  the non-dimensional wavenumber (67), and proves too that the Stokes-layer result 
(89) is a correct limiting value for K small. 

Both for sound waves and for cochlear travelling waves, moreover, an additional 
contribution 

is made to shear-stress streaming in cases when the velocity amplitude V is varying 
with x. This contribution arises from the extra term 

- iV( d V/dx)o-' (89) 

- tV( dV/dx)w-' (90) 

in the Stokes-layer form of v which the equation of continuity then requires in both 
theories, and which, with (63) for u, adds a contribution (90) to the equation (85) for 
us. For a demonstration that our Stokes-layer results for shear-stress streaming are 
a correct small-K limit of results not making any boundary-layer approximation, see 
Appendix B. 

The three results (88), (89) and (90) for different components of us, the streaming 
velocity forced by Reynolds stresses acting within the Stokes layer, may be 
combined into a single equation 

us = tP kw-'-%V(dV/dx) W-'. (92) 
This equation, representing the effective 'slip velocity ' at the boundary for the Euler 
mean motions external to the boundary layer, extends the classical acoustic- 
streaming result (1) to cochlear travelling waves - justifying, perhaps, this paper's 
title 'Acoustic streaming in the ear itself'. 

7. Modifications to streaming formulae for three-dimensional motions 
The streaming results in $55 and 6 were derived for the locally two-dimensional 

motions of $4, which are expected to be an increasingly good approximation in those 
regions, very near the characteristic place, where (if anywhere) streaming motions 
may possibly be important. This consideration-along with a current lack of 
accurate knowledge about basilar-membrane bending modes - might be thought to 
imply that any extension of streaming formulae to three-dimensional motions would 
at present be premature ; nevertheless, in a paper aiming to offer a comprehensive 
account of how mean streaming motions may be estimated for cochlear travelling 
waves, it seems advisable to put such modifications on record. 
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There is moreover, within the entire literature of acoustic streaming, a regrettable 
absence of information about streaming generated within three-dimensional Stokes 
boundary layers. The present section, then, may be seen as going part of the way 
towards filling that gap by showing how the appropriate treatment proceeds in one 
important case (that of cochlear travelling waves). At the same time, readers who 
may prefer to skip this section can rest assured that they will not thereby be 
hampered in studying later sections ! 

The calculations are presented for a three-dimensional Stokes boundary layer 
where the x-velocity u and the z-velocity w just outside it take values 

u =  i V  and w =  W .  (93) 

As in 56, the streaming is calculated first of all in the simple case when V and W are 
constants (independent of x and z ) ,  after which any effects of their spatial non- 
uniformity (variation with x and z )  on generating additional streaming motions are 
determined. In  the meantime, we recall that (29) suggests 

w = -k-1av/az (94) 

as a useful approximation near the characteristic place to the value of w just outside 
the Stokes layer. 

Inside the layer, the expression (63) for u is complemented by a similar expression 

(95) 

for w. Here, it is noteworthy that u and w remain 90" out of phase for all values of 
y. This simplifies streaming theory because it makes one particular Reynolds stress 
component vanish : 

w = ~ ( 1  -exp ~-y(iw/v)f]) 

p(uw)  = 0. (96) 

In  the case to be considered initially (with V and W as constants) there is no awlaz 
term in the equation of continuity, which, accordingly, yields (64) for v as before. 
Then the difference wM between the z-velocity's Lagrange and Euler means can be 
written 

W M  = ((aw/ax) dx + (aw/ay) Sy), 

w M  = & Re [ - ikwti/( - iw) + (aw/ay)F/( - iw)]. 

(97) 

(98) 

which, inside the Stokes layer, takes the form 

Here, however, (96) makes the first term in square brackets vanish ; while the second 
term gives 

wM =tRe{[Wexp [ - y ( i w / v ) ; ] ~ ~ ~ ] ~ [ , - k y  

This equation, in sharp contrast to (73), makes wM tend to zero outside the layer 
(where no z-component of mass flow accompanies the Stokes drift in the x-direction). 
I ts  leading term inside the layer is 

iw-' WV exp [ -y(iw/v);] 
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arising like (74) from the element 1 within the last square bracket. A t  y = 0, where 
indeed the other terms vanish, this term (100) takes a negative value 

analogous to (75) ; on the other hand, the contribution to s: wy dy made by this term 
(100) is zero. There is, in short, zero mass flow in the z-direction both outside and 
inside the boundary layer, so that the conclusions of $5 about the ineffectiveness of 
excess mass flows for generating streaming remain unchanged. 

Forcing by Reynolds stresses, in the special case of constant V and W ,  is due 
entirely to shear stresses. At  any particular point within the Stokes layer, the rate 
p (vw) of inflow of z-momentum (per unit area) may be partly balanced, as in $6, by 
a rate p ( v w ) , ~ ~ ~  of outflow at the edge of the layer, and it is their difference that 
must in turn be balanced by a viscous shear stress ,uawE/ay acting within the steady 
Euler-mean-flow vortex sheet. Therefore, the differential equation (83) for uE is 
replaced by one for wE of a similar form 

awzlay = v-'((vw) -(vw)edge), 

which must be solved subject to the boundary condition 

Then the value of wE a t  the edge of the layer becomes 

ws = - wvl+ u-'J; ( ( v ~ > - ( w w ) ~ ~ ~ ~ ) d y .  
(8vw)z 

Here, from (64) and (95) for v and w, we have 

(vw} = 4 Re W(1 -exp [-y(iw/u)i]) V 1 + ( 1  -exp [- y( -iw/v$]) k 

(105) 
{ [ 

so that 

(vw) - ( v ~ ) ~ ~ ~ ~  = &WV -Re exp [ -y(iw/u)i] 

+ ( 1  1 -exp [ - y(iw/u)i]12- 1) k 

The integral of (106) from 0 to 00 can be written as the sum of two terms 

VW VWk 
(8uw)i 4w 

corresponding, as with (87), to the main terms in (106), but with their values 
significantly modified because the i V  in (63) for u has been replaced by the W in (95) 
for w. Nevertheless the net effect on the component (104) of shear-stress streaming 
is an equation 

very closely parallel to (88) for us. 

W, = -%WVkw-' 
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Next, as in $6, we study in two parts the effects of spatial variability of wave 
amplitudes. First, we consider normal-stress streaming, obtaining the same 
contribution 

as before (see (89) above) to the x-component us from forcing by the x-gradient of the 
Reynolds stresses p(u2). The corresponding forcing by the z-gradient of the 
Reynolds stress component p( w 2 )  makes an exactly analogous contribution 

-p(av/ax)  u-1 (109) 

-$w(aw/az) w-1 (110) 
to ws. 

velocity amplitudes V and W may vary with x and z .  Then the equation of continuit 
constrains us to include in the Stokes-layer form of v an extra term 

Secondly, we must find the additional shear-stress streaming in cases when the 

(111 

slightly more complicated than (91). With (63) for u, this adds on to (uw) a term 

iV( 1 - exp [ - y(iw/u)$) -9 + (1 - exp [ - y( - iw/u)i]) 

(112) 
Accordingly, (uv) - (uv),~~~ is changed by a term 

so that its integral from 0 to 00 is changed by 

(114) 
and yields a contribution to us, by (85), of 

The analogous contribution to (104) for ws is obtained from a form of (uv) which is 
(112) with the initial factor i V  replaced by W ,  so that on the left-hand side of (114) 
the initial factor V is replaced by -iW. This yields a contribution 

to  ws. 
The different contributions (88), (109) and (115) to us, and similarly the 

contributions (108), (1 10) and (1 16) to ws, may now be combined to  give as the final 
conclusions of the three-dimensional streaming analysis 

'I (117) 
us = +v2 k w - q v ( a v / a x -  aw/az) w-l, 

ws = -+Wv~w-l-aw(aw/az+aV/ax)w-l. J 
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Any apparent asymmetry in these conclusions is, of course, merely a consequence of 
the 90' phase difference between the 'edge' values (93) of the x- and z-velocities. 

Near the characteristic place, we can make the substitution (94) to obtain a first 
approximation to the magnitude of these three-dimensional effects. This gives 

equations which indicate how the x-component of the streaming motion may be 
modified by a k-' term while the motion also acquires a z-component independent of 
k .  These are modifications of only moderate magnitude which it will, perhaps, be 
unnecessary to take into account in initial estimates of streaming. 

8. Modifications to streaming formulae for high wavenumbers 
For cochlear travelling waves, this paper's central conclusion is that forcing by 

Reynolds stresses in Stokes boundary layers ($6) produces mean streaming motions 
near the characteristic place that are described approximately by (92), in essential 
agreement with (1) for classical acoustic streaming as analysed by Rayleigh (1896). 
This conclusion of $6 has already been critically examined from two points of view : 
the possibility that ' Stokes drift ' might contribute significantly to streaming has 
been scrutinized ($ 5 )  and largely discounted, while modifications due to three- 
dimensional effects have just been worked out ($7 )  and shown in (118) to be 
significant only at  relatively lower wavenumbers. We now embark on a third 
critique, concerned with how far (92) retains its validity at  very high wavenumbers 
k ,  when the boundary-layer approximation breaks down because the Stokes layer 
ceases to be thin on the lengthscale k-l of penetration of wave motions into the 
cochlear fluids. 

The compelling need for all this critical analysis - and for its detailed exposure to 
expert and discerning readers of the Journal of Fluid Mechanics - derives from the 
practical impossibility of experimentally measuring mean streaming motions in any 
living cochlea. This implies that only by a scrupulously careful estimation process 
- founded on well-established principles of biophysics, biomechanics and above all 
fluid mechanics - is there any chance of assessing whether or not mean streaming 
motions may possibly be mediating inner-hair-cell transduction in the immediate 
neighbourhood of the characteristic place. Because, moreover, this location is where 
the greatest wavenumbers are expected to be found, the previous calculations must 
be repeated for values of K ,  the non-dimensional wavenumber (67), exceeding those 
small values for which the boundary-layer approximation may be justifiable. 

These are the considerations which necessitated the quite extensive analysis set 
out in Appendices A, B and C. On the other hand, that analysis without any use of 
the boundary-layer approximation has saved much space in 5 6, where simple 
application of the approximation on classical lines led quickly to the basic equation 
(92), without any substantiation by 'matching ' methods being called for, because the 
Appendices prove this equation to be a rigorous small-K limit. 

Here, we simply indicate the method pursued in the Appendices and set out the 
principal results. The method uses (Appendix A) the full NavierStokes equations 
for a viscous incompressible fluid and determines small-amplitude solutions of any 
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given wavenumber k, large enough for the motions to be locally two-dimensional and 
to satisfy boundary conditions u = 0, v = V on y = 0. These two-dimensional 
solutions (A 4), uniformly valid for all values of K ,  exhibit limiting tendencies as 
follows : 

(i) for small K,  they show the familiar transition from boundary-layer forms (63) 
and (64) to the circular motions (54) and (55) outside the boundary layer; while 

(ii) for large K ,  they tend to forms 

u =  iVkye-ku, w = V(l+ky)e-’”, (1  19) 

with reduced magnitude for the x-component u (see figure 1 1  ; its greatest value is 
only Ve-’ compared with a maximum of V for the y-component w). 

The solutions are valid not only for real but also for complex k, the latter case 
offering a convenient local representation of waves with spatial growth or decay. 

The rest of Appendix A calculates the rate of energy dissipation, A per unit area 
of basilar membrane, for the flow on either side of it. Figure 12 displays how A makes 
a transition between its small-K form (66) and a limiting form ,ukP for large K .  

Appendix B first obtains uM, the difference (3) between the Lagrange and Euler 
mean motions. For all values (including complex values) of k it demonstrates exactly 
the property (79) which was thoroughly discussed in $5. 

Forcing by Reynolds stresses is then invcstigated. Appendix B addresses first the 
calculation of shear-stress streaming in waves with V independent of x ;  confirming 
the correctness of (88) for small K but showing how, with increasing K ,  shear-stress 
streaming rises to  double that value. 

Next, the case of V varying with x is treated by altering Ic into k+ ie  so that 

becomes V eEz ei(wt-kz). (1  20) Vei(wt-lc%) 

Thus, E can be used to represent V-’dV/dx, and a calculated contribution to shear- 
stress streaming proportional to  W E  becomes one proportional to VdV/dx, with (90) 
as its small-K limit although with a change of sign as K increases. 

Finally, Appendix C investigates normal-stress streaming for general K .  Expres- 
sions for the rate of vorticity generation in the Euler mean motion are used to 
relate the strength of the vortex sheet on the basilar membrane to a difference 
p(u2-w2) of normal stresses. Here, (w’) replaces a term in classical acoustic- 
streaming theory which is the value of (u2 )  a t  the edge of the Stokes boundary layer. 
The two coincide in the small-K limit, when both yield (89) for the normal-stress 
streaming; but alterations in the relative magnitude of u and w (referred to earlier) 
cause this contribution to us, rather like that just mentioned, to suffer a change of 
sign as K increases. 

At the end of Appendix C, the different contributions to us are combined into a 
single formula (C 26), representing a modification of our basic equation (92) for 
wavenumbers so high that the non-dimensional wavenumber K is no longer small. 
This equation, 

incorporates the two functions of K plotted in figure 7. As mentioned already, the first 
term - a shear-stress streaming independent of dV/dx - carries a coefficient U ( K )  

which doubles its value for large K .  By contrast, the second term, which combines 
normal-stress streaming with the component of shear-stress streaming which 
depends on dV/dx, carries a coefficient T(K) that exhibits an early change of sign 
(present in both component parts) but tends to zero for large K. 

us = aVkw-’a(K) -$V(dV/ds) W - ~ T ( K ) ,  (121) 
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FIQURE 7. The classical acoustic-streaming formula (92) assumes for high wavenumbers the 
modified form (121), incorporating two functions - U ( K )  (solid line) and T ( K )  (broken line) - of the 
non-dimensional wavenumber (67). 

This third tranche of critical analysis of (92), then, has led to a particularly 
important result, in its revelation of the need, a t  very high wavenumbers, for some 
substantial modifications to that equation. These amount to a doubling of the 
leading term, alongside some diminution in the other term's relative importance. 

If, in the large-K limit, we ask for the physical significance of the doubled leading 
term, we discover that it comes entirely from the boundary condition analogous to 
(go), 

since the limiting equations (119) give, with Sy = v/(iw), 

( u E ) p o  = - (uM),-O = tP kw-l, 

(uM)y=o = ((au/ay) Sy)y=O = - ipkw- ' ,  

(122) 

(123) 

while making the shear stress p (uv) everywhere zero. This, then, is a limiting case 
in which the Euler mean motions are forced entirely by the boundary condition 
uL = 0 on the Lagrange mean motions. 

9. Mean flow across inner-hair-cell stereocilia 
The aim of all the research outlined in this paper is an estimation of the magnitude 

of any mean motion across the row of inner-hair-cell stereocilia that  may be capable 
of acting on them with a mean deflecting force. I n  this section we apply the results 
of our extended investigation of us - the effective slip velocity very near the basilar 
membrane - to estimate the mean flow pattern at locations farther away from it, 
such as those of inner hair cells. 

From among the two kinds of mean motion distinguished in $5,  we study in the 
first place the Euler mean motion as determined by the boundary value, us, of its x- 
component. Later, we consider effects of any z-component ws (as estimated in §7) ,  
and address also the difficult question of whether the mean deflecting force on 
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stereocilia responds more to the Euler or to the Lagrange mean motion (the 
differences between them, however, being much reduced a t  the locations of inner hair 
cells). 

It is the z-component wE of the Euler mean motion which may be capable of 
exerting such a mean deflecting force. First of all, then, we must ask whether an x- 
component us of slip velocity a t  the basilar membrane can generate any substantial 
z-component wE of mean flow across the row of inner-hair-cell stereocilia. 

The simple answer is that, primarily, this may result from any abrupt change of 
us with x, as we now explain qualitatively before giving detailed fluid-mechanical 
calculations that support the suggestion. Both the qualitative and quantitative 
analyses are based on consideration of those (inertialess) ‘ creeping ’ motions in the 
scala media that may be generated through viscous traction by the motion us present 
a t  one of its boundaries. 

Suppose, for example, that (as (121) may suggest) the value of us increases just 
before the characteristic place to a peak from which it falls abruptly to zero, thus 
producing an inflow to the characteristic place that is not matched by any outflow 
beyond it. In  the low-Reynolds-number hydrodynamics of creeping motions, with 
inertia negligible, the unbalanced inflow cannot continue in any ‘ jet-like’ form but 
must spread out in all directions, with, moreover, some preference for directions 
away from the resistive solid boundary. Within a cochlear cross-section, the part of 
this flow that is ‘inwardly’ directed - towards the inner hair cells - is available to 
apply an ‘ inward ’ deflecting force to their stereocilia. Indeed, a ‘ channelling ’ of flow 
across the row of stereocilia may result from certain features (such as the arch of 
Corti) of that cross-section’s geometry. 

The essential idea of this qualitative analysis may first of all be substantiated by 
a quantitative model, founded on simple physical ideas, which meticulously reflects 
the fluid mechanics near the basilar membrane itself although it leaves out any such 
special geometrical features of the scala media. It is based on an exact solution of the 
equations of low-Reynolds-number hydrodynamics which, besides satisfying a 
boundary condition 

on the plane y = 0 representing the basilar membrane, portrays a fluid flow that fills 
the entire region y > 0 - although a t  speeds decreasing with distance from that 
limited area of basilar membrane where us takes significant values. 

This preliminary solution describes, then, how the creeping motions in the scala 
media are initiated a t  the basilar membrane. Evidently, however, modifications due 
to geometrical features of structures in and around the organ of Corti need to be 
incorporated in later analyses. 

Creeping motions satisfy the linearized momentum and continuity equations 

u = us(z,z), w = w = 0 (124) 

v p  = pv2u, v * u  = 0, (125a, b )  

which omit all inertia terms (differing in this way from the equations (A 1) that 
govern audio-frequency motions) so that pressure gradients and viscous forces are in 
balance. The divergence of this balance result gives 

v2p = 0, (126) 

and it follows that (125a) can always be satisfied by the velocity field 

*,p’ where r = (z, y, z )  (127) 
2P’ 
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FIQURE 8. As our primary interpretation of the quadrupole pressure field (129) we use the pair 
of dipoles (a ) ,  representing forces + F  and -F in the y-direction with (anticlockwise) moment 
F6 = Q.  Later, we note alternative interpretations: ( b )  in terms of forces +F and -F in the z- 
direction with equal and opposite moment -Q ,  and (c) as the mean of both configurations (a 
distribution of forces with zero net moment - as in the action of a shear stress). 

is the position vector. 

because 
In general, however, the convenient solution (127) for (125a) fails to satisfy (125b), 

W.(I)r) = pW.r+r-Wp = 3p+r-Wp (128) 

is not necessarily zero. Nevertheless, (128) is zero whenever p, besides satisfying 
Laplace's equation (126), is a homogeneous function of degree ( -  3). 

One example of such a homogeneous harmonic of degree (-3) is the quadrupole 
pressure field 

associated with two equal and opposite dipole pressure fields 

p = -  FY 
4xr3 

centred (figure 8) upon points a distance 6 apart, where F6 = Q. Acousticians know 
well that the dipole pressure field (130) represents the action of a force F in the 
y-direction concentrated at  the origin; and this may be verified by calculating the 
resultant pressure 

p dx dz = p y  1yI-l (131) 

over any plane y = constant - which comes to l$ for y > 0 and -l$ for y < 0, the 
difference between them accounting for the concentrated force F acting at y = 0. The 
pair of dipoles illustrated in figure 8 represents similarly a force-couple or torque of 
moment Q about the z-axis, as we may analogously verify for the pressure field (129) 
by calculating the moment of those pressures acting on any plane y = constant : 

xpdxdz = !&yIyI-l = &% for y 3 0, 

where the difference of Q accounts for the concentrated couple or torque acting at  

Note that in both cases - dipole or quadrupole - the pressure field (130) or (129) is 
y = 0. 
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zero a t  all points on y = 0 except the origin (where it is singular). This simply reflects 
the concentration of the force or couple a t  the origin. 

Because the pressure field (129) is homogeneous of degree ( - 3), the velocity field 
(127) satisfies all the equations of motion. Also, its x-component is 

so that, by (132), 

Q u dx dz = - 
4P 

on any plane y = constant > 0. 

(133a) 

(133 b )  

This result, with the fact that, as y + O  from above, u (like p) becomes zero at all 
points except the origin, specifies the boundary value of u as 

Q 
4P 

us = - S(x) S(z)  (134) 

where S(x) is the Dirac delta function. 
By taking Q = 4p, then, we obtain from (129) and (127) that singular solution 

of (125) for y > 0 which satisfies the boundary condition (124) with 

us = 44 q.4, (136) 

representing traction by a slip motion concentrated at the origin with unit integrated 
strength. We shall, of course, use this singular solution to write down the general 
solution satisfying the boundary condition (124) for arbitrary us (x, z ) .  

Before doing so, we comment a little further on the attractively simple solution 
(135). This has been described as a ‘stresslet’ in the literature of low-Reynolds- 
number hydrodynamics (Happel & Brenner 1965) ; and indeed, as figure 8 shows, the 
quadrupole form of p could equally be associated with a pair of dipoles directed at 
right angles, of moment - Q; or, alternatively, with the mean of both configurations 
(forces in the y-direction forming a couple of moment tQ together with forces in the 
x-direction forming one of moment -aQ). Actually, the fluid motion (135) can 
(rather cumbersomely) be derived as the limit of the sum of four ‘stokeslet’ fields, 
one being generated by each of this ‘stress-like ’ combination of forces. In  the present 
application, however, the physically simpler derivation of its properties that has 
been given above can reasonably be preferred. 

Among the velocity components in the ‘stresslet’ solution (135) the z-component 
w concerns us most since it is in the direction needed to  deflect inner-hair-cell 
stereocilia. Although vanishing, of course, a t  the resistive solid boundary y = 0, its 
value in the region y > 0 of the scala media involve an outflow (w having the same 
sign as z )  at  all points x > 0 distal to the origin where slip, according to (136), is 
concentrated. 

For a quite general distribution (124) of boundary slip, the corresponding value of 
w can be built up as a continuous distribution 
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of stresslet solutions (135) centred at  all positions (X, 2) on the basilar membrane 
where slip is present. Equation (137) becomes particularly useful after an integration 
by parts, giving 

The expected pattern of multidirectional outflow from a region of unbalanced 
inflow such as may accompany any extremely abrupt fall of us from its peak value 
to zero is well exhibited in (138), which (where, once again, y > 0) ascribes to any 
positions (X, 2) with very high values of ( -i3us/aX) an outflow (w and ( 2 - 2 )  having 
the same sign) that decays initially as just the inverse first power of distance. (Such 
gradual initial decay would be maintained until distances were reached where 
opposing contributions from proximal regions where aus/aX takes positive - albeit 
more moderate - values could reduce w significantly.) The outflow is most marked 
where Jx-X( is small ; in other words, very near the characteristic place. 

The ‘source’ of this multidirectional outflow is the abrupt fall of us to  zero from 
a maximum value 

U,m&”(Z) (139) 

which, as here indicated, varies with 2 across the width of the basilar membrane - 
although the maximum is reached at a position X = X, (just before the characteristic 
place) which is essentially independent of 2. I n  (138)’ the ‘source strength’ might be 
defined as 

which, having the dimensions ‘velocity times distance’ is not so much a flow rate in 
the true sense as some ‘two-dimensional analogue ’ of a flow rate. For x near X,, the 
mean ‘far field ’ flow pattern associated with this source of strength (140) is given by 
(138) and by the analogous equation for v as 

(141 a ,  b )  

if the origin of z is taken as the centroid of the distribution (139). 
Equation (141 a )  may be thought to have some modest value as suggesting an 

order of magnitude for w a t  inner hair cells, but such a value is limited by the 
equation’s excessive dependence on an over-simplified geometry. We learn far more 
by recognizing the velocity field (141) as two-dimensional and solenoidal, and as 
directing away from the origin into the region of fluid y > 0 a total flow 

q per unit length. (142) 

In  this sense, q is truly a ‘two-dimensional source strength’, although (141a, b )  
describe not so much an omnidirectional source as one with a certain bias against 
directions close to the resistive solid boundary (figure 9). 

The source-like motion, then, is by no means irrotational; and we must avoid 
giving any impression that simple considerations from the equation of continuity 
associate an unbalanced inflow (139) to the characteristic place with a rate of outflow 
(140) per unit length. On the contrary, the momentum equation (describing 
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U a 

/ , , , , , , I  ,,,,,,,, / 
FIGURE 9. The two-dimensional and solenoidal distribution (141) of vector velocity is exhibited for 
points at  a particular distance from the origin. While the velocity’s direction is everywhere 
outwards from the ‘source’, its magnitude is relatively less in directions close to the solid boundary 
(hatched line). 

‘traction’ by the streaming motion’s boundary values) plays a key role in 
determining the value (140) of q, including especially the factor 7c-’ which appears 
outside the integral. 

At this stage, the true geometry of the scala media can be properly allowed for if, 
near the characteristic place, we regard (140) as defining the mean streaming outflow 
per unit length from the basilar membrane (figure 9) and then take into account 
effects of the detailed geometry in determining what happens to that flow. If, for 
example, it were to be mainly channelled through the gap between inner hair cells 
and the tectorial membrane, then the deflecting force acting on stereocilia would be 
directly determined by the flow rate q per unit length through that gap. This idea, 
to be studied further in our concluding $ 10, indicates the potential importance of the 
above inference of an outflow rate q from a distribution us of effective slip velocity 
forced by Reynolds stresses. 

In the meantime, we consider briefly whether the slip velocity’s z-component ws, 
estimated in $7 ,  could make contributions to the value of w near inner hair cells 
comparable to those of us itself. Superficially, this might be considered possible 
because the direction of ws coincides with the direction of those mean streaming 
velocities w that could deflect inner-hair-cell stereocilia. This ‘advantage ’ is 
massively outweighed, however, by two considerations : 

(i) the relatively smaller magnitude of ws as estimated in (118); and 
(ii) the fact that its leading term (the one independent of k) takes the form of a z- 

derivative 

and therefore integrates to zero across the width of the basilar membrane. 

above) the simple ‘half-plane’ geometry (y > 0) for the fluid region. 

rotated through 90” to yield a corresponding solution with 

We can briefly indicate the importance of this last point by a calculation using (as 

Then the stresslet solution (135) related to the boundary value (136) may be 

(144) 
3xyz u=- related to ws = 6(x) 6(x). 3zy2 

2xr5 ’ 2 ~ ~ 5  ’ 2 ~ 5  
v=- 3Z2y w=- 

The value of w related to a general boundary distribution ws(x,z)  may then be 
written down as 
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but a comparison with (137) quickly shows (145) to be much the smaller if ws is 
dominated by the z-derivative term (143) which integrates to zero. Then, indeed, an 
integration by parts shows the far-field behaviour of (145) to be dominated by the Z -  
derivative of the term in curly brackets. Therefore, it exhibits inverse-cube decay, in 
stark contrast to the much slower inverse-first-power decay obtained above for the 
contribution from us; and it need not be further considered. 

We may similarly conclude that little account need be taken of the differences ($5) 
between the Euler and Lagrange mean flows at  the locations of inner hair cells, 
because those differences fall away exponentially with distance from the basilar 
membrane, the decay taking, for example, the form (68) just outside the Stokes 
layer. Fortunately, then, we are not compelled to probe exhaustively the difficult 
question of whether the mean deflecting force will be more responsive to the Euler 
or t o  the Lagrange mean flow ; very briefly, however, we note that the answer must 
be strongly influenced by whether responses of stereocilia to vibrations at the 
characteristic frequency are stiffness-dominated or inertia-dominated. Stereocilia 
may, perhaps, predominantly ‘feel ’ the Euler mean motion (mean velocity a t  a fixed 
point) in the former case and the Lagrange mean motion (mean velocity following a 
fluid particle) in the latter. 

10. Fluid-mechanical conclusions 
This is not a paper which seeks to draw any biological conclusions. It does, on the 

other hand, attempt a comprehensive review of those mean streaming motions that 
may be generated by cochlear travelling waves ; and the fluid-mechanical conclusions 
of this review can now (perhaps) be summarized, with cross-references to parts of the 
paper where each is substantiated. 

For acoustic components of a particular frequency w ,  a fairly steep increase in 
wave amplitude to its maximum at the characteristic place is immediately followed 
by a precipitous fall to zero, as illustrated in figure 1 and interpreted in $2 generally. 
The three-dimensional distribution of wave energy has been described ($3) and 
shown, very near the characteristic place, to involve locally two-dimensional motions 
close to each point of the basilar membrane ($4). Here, local mean streaming motions 
($55-8) are generated through the action of mean momentum flow (Reynolds stress) 
in producing an effective slip velocity. 

This slip velocity, given by the classical acoustic-streaming formula (92) at 
moderate wavenumbers and by the modified formula (121) at high wavenumbers, 
displays once again a fairly steep increase to a maximum (139) at the characteristic 
place, followed by an extremely precipitous decrease, which in turn ($9) creates in the 
local cochlear cross-section a mean outflow (140) per unit length from the basilar 
membrane (figure 9). If the cross-sectional geometry acts to channel such a flow 
through the space between inner hair cells and the tectorial membrane, then the 
stereocilia of those cells may be deflected by this mean throughflow. 

In order to make the above suggestions quantitative, we must use (140) to 
estimate the outflow q per unit length emerging from the basilar membrane at  the 
characteristic place. The estimation needs to be attempted both for waves that are 
freely propagated and attenuated ($ 2) and for waves experiencing additional 
amplification as a result of forcing movements by outer hair cells. 

Unfortunately, however, our analysis of the latter process ($3) remains too 
incomplete to permit useful estimates to be attempted. This is particularly to be 
regretted since the amplified waves can be expected to generate enhanced mean 
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streaming motions. It means that, in considering free waves below, we must 
continually recall that our estimates of streaming may be underestimates when 
forcing is present. 

Waves that are freely propagated, and attenuated at a proportional rate D,  have 
the above-noted 'fairly steep increase, followed by a precipitous fall' of their energy 
E per unit length of cochlea described either (i) by (18) for E in integral form or (ii) 
by the equivalent differential equation (19). Each of these equations shows us readily 
that E takes its maximum value a t  the position x where the condition 

is satisfied. Beyond that maximum, where the integral in (18) grows without any 
limit, its negative exponential plummets to  zero. 

The place x where the energy E per unit length is a maximum must also be a place 
of peak velocity amplitude V (at each location z across the width of the basilar 
membrane). On the other hand, the slip velocity us has not yet reached its maximum 
velocity (139) a t  such a place. I n  the classical acoustic-streaming formula (92), for 
example, the V factor in the first term has reached its maximum but the k factor is 
still increasing with x. The second term, furthermore, begins to make a positive 
contribution to us where V is decreasing beyond its maximum. Thus the value of the 
first term where V is greatest is certainly an underestimate of uFX itself; and the 
same conclusion follows from the modified formula (121) because the extra factor cr 
grows from 1 to 2 a t  very high wavenumber. 

In  a strictly preliminary estimate of u y x ,  however, we can use, at the place where 
condition (146) is satisfied, just the first term 

us = +P kw-' (147) 

in (92), knowing it to be a distinctly 'conservative estimate' (more precisely, an 
underestimate) because, alongside its disregard of any forcing (see above), it neglects 
(a)  the continuing increase in k ;  ( b )  the extra factor > 1 in the more accurate 
equation (121); and (c) the positive contribution, where V is decreasing, from the 
second term in (92) - or, in (121), from the second term up to where T changes sign. 
For the moment, we postpone application of considerations (a),  ( b )  and (c), and 
utilize (147) as our first conservative estimate for uFx. 

Its use, by (140), gives an equation 

q = - k w - l  P d z  
4R l i  

for the mean outflow per unit length from the basilar membrane a t  the characteristic 
place. Here, the value of kw-' (the reciprocal phase velocity) may be estimated from 
(146) which must be satisfied where V is a maximum. With expression (13) for U it 
takes the form 

so that (1  1 )  for k gives 



Acoustic streaming in the ear itself 589 

In  (150), the term in square brackets is taken, to a close approximation near x = x,, 
as the downward gradient of In [s(x)] along the cochlea; which may be represented 
as a constant L-l (where L signifies the e-folding distance for basilar-membrane 
stiffness), and estimated as the overall decrease in In [+)I along the cochlea's length, 
divided by that length. 

A similar estimate for the proportional dissipation rate D must be based on its 
definition which makes DE the rate of energy dissipation per unit length of cochlea. 
But the energy dissipation rate A per unit area is given by (66) for each of the two 
boundary layers attached to the basilar membrane, from which it follows that the 
overall rate per unit length is 

The combined equations (148), (150) and (151) now give 

Emax 
q i  

4np(@v)f L 

as our preliminary 'conservative' estimate for the mean outflow q per unit length. 
Here, L is the e-folding distance for basilar-membrane stiffness (as above) while E has 
been written as Emax because our calculation is concentrated on the place where the 
condition (146) holds so that the wave energy E per unit length takes its maximum 
value. 

This simple first estimate (152) is now relatively easy to improve in two stages. 
First, we take into account considerations (a) ,  ( 6 )  and ( c )  above while continuing to  
use the moderate-wavenumber formulae (92) for us and (66) for A .  This yields a value 
of q increased by a factor approaching 1.5, resulting from values of us that rise (figure 
10) to  a maximum almost 50% greater than at the place where E = Emax. At that 
maximum the value of k is increased, but again only by a moderate factor around 
1.5 ; and the analysis is completed by showing that the non-dimensional wavenumber 
K then remains sufficiently small for the numerical results to be affected to only a 
modest extent. 

The curves in figure 10 are obtained from the distribution (18) of E for values of 
x between x, (the value where E = Emax) and x, (where E has plummeted to zero). 
This is an  interval where, for simplicity, we can represent (130 as a quadratic 
variation 

u = k(x,-x)2 (153) 

of the group velocity U with x ;  here, (146) defining x, makes 

7#l(xr-xm) = D. 
Therefore, (18) gives 

(154) 

Similarly, we can represent (11) as a linear variation 

k-1 = pcx, - 2) 
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FIGURE 10. The energy distribution (155) is shown (dotted line), while the modifying factor (159) 
is plotted (solid lines) for three positive values (0.1, 0.15 and 0.2) of B and also (broken line) for 
B = 0. 
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FIGURE 10. The energy distribution (155) is shown (dotted line), while the modifying factor (159) 
is plotted (solid lines) for three positive values (0.1, 0.15 and 0.2) of B and also (broken line) for 
B = 0. 

is the value of the small parameter (14) a t  x = 2,. 

Now the classical acoustic-streaming formula (92) for us can be written 

so that its ratio to the value of us where x = x, (and dV/dx = 0) would be 

This modifying factor is plotted in figure 10 for x, < x < x, with three different 
values of the small parameter P. The conclusions are not very sensitive to  the value 
of p ;  tentatively, we use the intermediate value /3 = 0.15 which represents the value 
(14) of k-2 ak/ax for the cochlear travelling waves illustrated in figure 1 .  

On this basis, the maximum UP for each z is increased by a factor of 1.44 over 
its value a t  x = x,, so that  expression (140) for q is increased to 1.44 times the 
preliminary estimate (152). The modifying factor would, on the other hand, be 
reduced to 1.24 if p were zero (broken line). 

Probably, the true figure lies somewhere between these limits, because in the high- 
wavenumber result (121) the coefficient 7 ( ~ )  shows an early decrease from unity 
towards zero in the range 0 < K < 0.1, a range in which, by contrast, both V ( K )  and 
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the factor (figure 12) that modifies the dissipation rate d remain close to unity. Then 
/3 must be replaced by /37 in the high-wavenumber modification of (159), and this 
reduction gives it a maximum value lying somewhere between 1.24 and 1.44. Such 
a modifying factor, applied to us(z) for each z and thus to (152) for q, brings it 
numerically to 

0. 15Emax 
p(wv)iL ' q =  

where the coefficient 0.15, as quoted to two significant figures, stands for a number 
between 0.14 and 0.16. 

Such a level of uncertainty reflects a real difficulty in estimating the non- 
dimensional wavenumber (67). At the point x, for maximum wave energy, the 
wavenumber k ,  is given by (150), while D satisfies (151), so that the value of K is 

E 
K, = k,(u/w)i = 

If basilar-membrane stiffness ~ ( x )  decreases by between 3 and 4 orders of magnitude 
along the length of the cochlea, then In [s(x)] decreases by between 7 and 9 so that 
L is between one-seventh and one-ninth of the cochlea's length (making L d 2  around 
6 to 7 mm in a human cochlea, for example). The factor in curly brackets, on the 
other hand, represents the mean distance of penetration of kinetic energy -both 
solid and fluid, constituting the whole of E at phases of oscillation where the basilar- 
membrane velocity takes its peak value V - into the cochlea. The mean penetration 
on both sides of the basilar membrane is likely to be less than one-fifth of the cochlear 
diameter (for example, less than 0.3 mm in a human cochlea) which suggests a value 
of (161) for K, not exceeding 0.05. Accordingly, even allowing for the fact that the 
curves in figure 10 have maxima at  points where k is around 1.5km, we can justifiably 
make the assumption 0 < K < 0.1 that was used to obtain (160). 

Our definitive conclusion on the magnitude of the mean streaming outflow, q per 
unit length from the basilar membrane at  the characteristic place, is expressed, then, 
by (160). For each frequency w ,  this depends on quantities p and u whose values for 
the cochlear fluids are the same as for water, on an e-folding distance L for basilar- 
membrane stiffness which (see above) is readily estimated, and on the maximum 
wave energy per unit length, Emax. As noted earlier, however, any use of this 
conclusion to investigate the possibility or otherwise of a resulting mean force on 
stereocilia playing a part in the process of transduction by inner hair cells is 
postponed to a later paper. 

It is a pleasure to express my warm thanks to Professor David Kemp for valuable 
discussions, to Dr M. E. McIntyre and Professor N. Riley for helpful comments on a 
first draft of the paper, and to the Leverhulme Trust for generous support. 

Appendix A. High-wavenumber modifications to the viscous dissipation 
rate 

A. 1. Introduction 
In this Appendix we investigate how the rate of energy dissipation due to viscous 
action in fluid near the basilar membrane may be modified at high wavenumbers, 
comparable with the reciprocal of the Stokes boundary-layer thickness. The 
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calculation is facilitated by the fact that such wavenumbers are large enough for the 
motions to be locally two-dimensional. 

There are classical reasons for expecting the calculated dissipation to be greater 
than the simple rate of dissipation in a Stokes boundary layer. For example, the two- 
dimensional motions occurring when progressive water waves propagate in a flat- 
bottomed channel suffer dissipation equal to the sum of the dissipation in the Stokes 
layer on the bottom and the rate of viscous dissipation for the irrotational flow 
external to the boundary layer (Lighthill 19786, 53.5). 

Against this background it may be seen as interesting that, in the analogous case 
when the free surface is replaced by a solid (though compliant) basilar membrane, we 
do once more find an increase ~ and yet by a lot less than would be obtained if we 
simply added the dissipation rates in the Stokes layer and in the external irrotational 
flow. 

Dissipation rate is, indeed, specified by a quadratic expression so that it can 
include ‘cross-terms ’ between the distributions of shear in the Stokes layer and in the 
external irrotational flow. These shears are found to be correlated negatively ; 
accordingly, the cross-terms contribute negatively to the total dissipation rate. This, 
in consequence, is increased by substantially less than we would have been led to 
expect by the classical calculation (in which no such negative correlation occurs) ; 
and a similar trend is found to  be continued even at wavenumbers so high that, 
effectively, no irrotational-flow region is present. 

A.2. Equations for the dissipation rate 
The linearized momentum and continuity equations 

piwu = -Wp+,uV2u, V - u  = 0 (A 1) 

for motions of an incompressible fluid (of density p and viscosity p )  a t  radian 
frequency w yield the following separate equations for the pressure p and velocity u :  

V2p  = 0, V2(V2  - iwv-’) u = 0 (A 2) 

where v = p/p is the kinematic viscosity. Two-dimensional solutions u = (u ,  v) of 
(A 2) for y 2 0 which satisfy 

on y = O  (A 3) = 0, 2, = I/‘ei(mt-kz) 

(corresponding to lateral oscillatory motions of the basilar membrane with velocity 
amplitude V )  take the form 

(e-k”-kK-’e-KY), (A 4) 

(A 5) 

K = k(V/w); .  (A 6) 

= e i ( w t - W  (e-W -e--Q), 2, = A ei(wt-kz) 

where the constants A and K satisfy the equations 

A(  1 - kK-’) = V ,  K 2  = k2 + iov-’. 

The general character of these solutions depends on the value of a non-dimensional 
wavenumber 

It is for small K that K far exceeds k in absolute value ; then the motion is effectively 
divided into (i) an external irrotational flow and (ii) a Stokes-layer flow, given 
respectively by the first and the second terms in each of equations (A 4). 

The mean dissipation rate per unit volume may be written 

2p ((au/az)z+ ( a v i a y y )  + p  ((au/ay+av/azy) (A 7) 
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which, with u and v given by (naturally) the real parts of (A 4), becomes 

(A 8) 

with the two separate terms in (A 7 )  represented, respectively, by the two terms in 
(A 8). From this quadratic expression it is already clear that the positive 
contributions to dissipation proportional to e-2kY and le-2Kgl will be offset by a 
negative contribution from the ' cross-terms ' related to e--(k+K)*. 

With terms of the three different kinds collected together, (A 8) becomes 

2 ,~1IA)~k~{2e-~~~-Re  [(2+k-1K+k~-1)e-(k+K)Y] + (1 +fIk-1K+kK-112) I e-2Krl}, 

with the negative cross-terms appearing in the middle. An integration of (A 9) from 
y = 0 to y = co gives the total dissipation rate d per unit area of solid surface as 

2,~IA1~k~(k--l-Re (k-1+K-')+(l+tlk-1K+kK-'12) (2 ReK)-l}, (A 10) 

where the substantial negative contribution from cross-terms is made particularly 
clear. 

(A 9) 

Finally, (A 10) may be written 

&lIA121Kl-2(ReK)-'[ -8k2(Re K)2+4k21K12+lK2+k212], (A 11) 

k2 = Re (K2)  = 2(ReK)2-lK12, IK2+k2I2 = 4 k 4 + ~ 2 v - 2 ,  (A 12) 

(A 13) 

which can be simplified, since (A 5) for K2 gives 

to the form 
& IA121Kl-2(Re K)-l w ~ Y - ~ .  

In terms of the velocity amplitude V given by (A 5 ) ,  the energy dissipation rate per 
unit area (A 13) becomes 

A = $P IK- kl-2(Re K)-l 1K2 - k2I2 = &uP(Re K)-' lK+ El2.  (A 14) 

A.3. Discussion of the results 
In a high-wavenumber limit, specified by (A 6) and (A 5) as one with K large so that 
K is close to k, the dissipation rate (A 14) becomes A = p k P .  For general 
wavenumbers, we may write the ratio A/ ,ukP  as a function of K in the form 

A (K4+1)h+K2 
1 + B ,  -- 

p k P  - 4~ Re ( K ~  + i)z 

where the additional a appears because the square lK+kI2 in (A 14) includes a cross 
term 2k Re K .  

Equation (A 15) is particularly interesting for quite small K .  Then the fist term is 
close to the value ( 2 ~ d 2 ) - l  corresponding to dissipation in the Stokes boundary layer, 
whereas the second term is only one-quarter of the rate of dissipation as classically 
calculated for the external irrotational flow on its own. As already explained, it is the 
negative correlation between those shearing motions in the two fields which combine 
into the dissipation rate (A 8) per unit volume that makes the integrated rate A 
substantially smaller than would be derived by simply adding up the two 
contributions. 

It is noteworthy also that the limiting value 1 of (A 15) as K becomes large 
represents only one-half of the dissipation for an irrotational flow compatible with 
the boundary condition on w alone. Evidently, this is because the motion in this limit 



594 J .  Lighthill 

0 1 2 3 4 
kY 

FIQURE 11. Illustrating the limiting forms (1 19) for extremely high wavenumber of the amplitude 
of oscillation of the y-velocity (solid line, representing v / V )  and the 2-velocity (broken line, 
representing lul/V) as functions of ky. 
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FIQURE 12. Plotting high-wavenumber modifications to the rate, A per unit area of basilar 
membrane, of energy dissipation within the motion on either side of it. The ratio (A 15) is shown 
as the broken line, here contrasted with the dotted-line values that would be obtained by 
(erroneously) adding the dissipations in the Stokes-layer and irrotational-flow fields. The ratio 
(A 16) of A to its value (66) on the Stokes-layer approximation is shown as a solid line. 

has become far from irrotational, with values of u substantially reduced relative to 
those of v (see figure 11 ; actually, (A 4) imply that IuI takes a maximum value of 
about Ve-l, compared with a maximum of V in irrotational flow). 

The broken line in figure 12 shows expression (A 15)  qud function of K as close to 
the Stokes-layer value ( 2 ~ 1 / 2 ) - '  for K < 0.1 and as close to its asymptotic value 1 for 
K > 1. The figure contrasts this accurately calculated result with the bigger (dotted- 
line) value ( 2 ~ 2 / 2 ) - ~ + 2  which would be obtained by (erroneously) adding the 
dissipations in the Stokes-layer and irrotational flow fields. 
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Lastly, the solid line in figure 12 represents the ratio of (A 15) to its simple Stokes- 
layer limit (2~2/2)-' .  Thus, the quantity plotted is the ratio 

d/[pP(+w)q (A 16) 

of A to  the value (66) calculated on the Stokes-boundary-layer approximation. 
This plain-line enhancement factor is seen to be quite substantial (even though 

smaller than might have been foreseen from an erroneous argument) and it 
reconfirms the steep decay of wave energy as the wavenumber becomes large. This 
is important in the context of the present paper because the associated decay in wave 
momentum becomes available to generate streaming motions. 

Appendix B. High-wavenumber modifications to shear-stress streaming 
B. 1. Introduction 

In this Appendix we make further use of the locally two-dimensional solutions 
derived in Appendix A for wavenumbers comparable to the reciprocal of the Stokes- 
boundary-layer thickness. The Reynolds shear stress 

P<UV> (B 1)  

is calculated, and used to determine the associated mean motions which we designate 
as shear-stress streaming. 

There are, of course, two alternative definitions of mean motion : the Euler mean 

U E  (B 2) 

UL (B 3) 

or average motion at a fixed point in space, and the Lagrange mean 

or average motion for a given particle of fluid. The difference between them is defined 
as 

UM = U L - U E .  (B 4) 

Its 2-component uM is calculated for the velocity field (A 4) in sB.2 (the corresponding 
vM is found to be zero) as assuming positive values for larger y and negative values 
for smaller y in such a way that the net mass transport 

is zero. This conclusion, furthermore, is found to  hold even when k is complex so that 
equations (A 4) are describing a spatially growing or decaying velocity field. 

The other importance of uy lies in the boundary condition that it imposes on uE 
at the solid surface. The fact that particles a t  the solid surface cannot move 
tangentially implies that uL is zero there. It follows that the boundary condition on 
uE takes the form 

(B 6) 

In  5B.3 we use this boundary condition to determine the Euler mean motion uE 

( U d y - 0  = - (UY)y-0. 

near the wall from a balance 
P (uv> = P a U E / ? Y  (B 7 )  

between the Reynolds shear stress (B 1) and the viscous shear stress pi3uE/i3y which 
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dominates the Euler-flow stress field in the thin layer where (uv) takes values 
significantly different from zero. This leads to  a determination of the shear-stress 
streaming us, defined as the value 

of the solution uE to (B 7) and (B 6) at the edge of this thin layer. 

a value of us in the form 

where K is the non-dimensional parameter (A 6) and for small K the function V ( K )  is 
close to 1 so that (B9)  agrees with the Stokes-layer calculation. As K increases, 
however, the function v (K)  grows slowly, to reach an asymptote of 2 for large K .  

Finally, calculations in sB.4 with k given a small imaginary part allow us to  derive 
the additional shear-stress streaming associated with spatial growth or decay of the 
velocity amplitude V. Equation (B 8) is then modified to 

The calculations in gB.3 for real k (waves without spatial growth or decay) give 

us = a V k w - k  ( K )  (B 9) 

us = $P~W-'V(K) -aV(dV/dx) W - ~ T ~ ( K )  (B 10) 

where T ~ ( K )  like V ( K )  is close to 1 for small K (so that B 10) agrees with the Stokes- 
layer calculation) ; however, T ~ ( K )  is found to decrease at first as K increases, and then 
to  take negative values before it finally rises to its asymptote of zero for large K .  

B.2. The mean motion uM and its zero net mass flow 
In  the velocity field (A 4), a particle's first-order displacements (ax, Sy) take the form 

Sx = u/(iw), Sy = v/(iw) (B 11) 

(B 12) 

and its mean velocity uM is 

uM = ((au/ax) ~ x +  (au/ay) ~ y ) .  

We calculate this mean using the rule that the average value of the product of two 
quantities specified as the real parts of complex multiples of eiWt is half the real part 
of a product of one quantity with the complex conjugate of the other. Thus 

uM = t Re [ ( A l w )  (e-kY-e-Ky)XE(e-kY-e-R") 

11 9 (B 13) + ( - ke-kY +Ke-KY) A( - iU)-1 (e-h - E K - 1  e-KY 

where the Sx in (B 12) has been placed before the &/ax but the Sy after the &lay. 
Equation (B 13) for the mean motion uM may be simplified in various ways, but 

for the analysis in this paper such simplification is unnecessary. We require only the 
boundary value 

( u ~ ) ~ - ~  = -gIA12~-111-kK-112 Re K = -$Pw-'ReK, (B 14) 

derived from the second line of (B 13) (since the first vanishes for y = 0) in two 
alternative forms which (A 5 )  shows to  be equivalent; and we need the mass-flow 
integral 
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in which the terms involving the four different negative exponentials may be lumped 
together and integrated to give 

1 E+K -1+Klf-' 
uM dy = t IAI2 w-l Re -- 

& + K + k  K + K  

=+IA12w-1Re [l-EK-l-l+EK-l] = O .  (B 16) 

It is remarkable that the mean motion uM has zero net mass flow even when the 
wavenumber k is allowed to have a complex value, corresponding to waves with 
spatial growth or decay. For some further discussion of this result, see $5. 

We may note also that a calculation similar to that in (B 13) gives 

vM = ((av/ax) Sx + (av/ay) Sy) = 0 everywhere (B 17) 

so that (B 13) specifies the entire mean motion uM as a flow in the negative x-direction 
for small y balanced by an equal flow in the positive x-direction for larger values of 
y. Essentially, (B 17) is derived from the fact that the equation of continuity makes 
av/ay = iku, which with av/ax = -ikv and (B 11) for Sx and Sy gives vM = 0. 

B.3.  Shear-stress streaming for waves of uniform amplitude 

The expression (B 8) for shear-stress streaming can be written, using the rule for 
mean values quoted in 3B.2, as 

us = - ( U ~ ) ~ - ~ + U - ~  t Re [ - iA- (e -~v -ee -RY)A(e -~~-kK- le -Kv) ]dy  

which includes terms from just three of the cross-products of exponentials in the 
integral because the fourth is purely real. We calculate (B 18) in this section for real 
k (so that E = k, corresponding to waves of uniform amplitude) before investigating 
cases with spatial growth or decay in 5B.4. 

Then (B 18), with its first term represented by the second of the two forms (B 14), 
and with A substituted from (A 5), becomes 

(B 19) 

(B 20) 

which can be simplified, using the consequences 

1K2 - k2I2 = W ~ U - ~ ,  2 Re K Im K = 0 u - l  

of the definition (A 5 ) ,  as 

2(ReK)2 ImK-lK12 I m K + k 2  ImK+2k R e K I m K  

However, because of two further consequences 

(ReK)2-(ImK)2 = k2, IK+kI2 = 1K12+2kReK+k2 = 2(k+ReK) R e K  
(B 22) 

of the definition (A 5 ) ,  the first two terms within the square brackets are equal to the 
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FIQURE 13. Plotting high-wavenumber modifications to shear-stress streaming. The solid line gives 
the factor U ( K )  in (B 9) by which shear-stress streaming for uniform-amplitude waves is altered, 
while the broken line gives the coefficient T ~ ( K )  in (B 29) that modifies additional shear-stress 
streaming due t o  wave growth or decay. 

third while the last one (occurring with negative sign) is one-half of all the others put 
together. Finally, then, with Im K eliminated by use of the second of equations 
(B 20), we infer that 

a satisfactorily simple expression which coincides with the Stokes-layer result for 
small K (when Re K is much greater than k) but rises to twice as much in the high- 
wavenumber limit (K large) when K becomes closely equal to k. This last is a limit 
in which (uv) vanishes and the value of us is dominated by the first term in 
expression (B 18), derived simply from the boundary condition (B 6). 

Figure 13 shows the form of the non-dimensional quantity CT(K) defined by (B 9) as 
the factor by which the Stokes-layer result has to be modified a t  higher wavenumbers. 
We see from (B 23) that 

(B 24) 

and from figure 13 that C ( K )  is close to its Stokes-layer value 1 for K < 0.1 and to its 
high-wavenumber asymptotic value 2 for K > 1. 

us = aP kw-' [ 1 + k(Re K)-'] : (B 23) 

c ~ ( K )  = i + ~ [ R e  ( ~ ~ + i ) i ] - '  

B.4. Additional shear-stress streaming due to wave growth or decay 
The biggest streaming effect associated with the spatial growth or decay of waves is 
the normal-stress streaming to be calculated in Appendix C. This is a streaming 
motion near the solid boundary generated by that spatial gradient in normal 
Reynolds stresses which, of course, may accompany any spatial gradient in wave 
amplitude. 

However, wave growth or decay does also produce some additional shear-stress 
streaming. Physically, this is because gradients of the velocity's x-component u in 
the x-direction generate (through the equation of continuity) additional terms in the 
velocity's y-component v which can contribute to the Reynolds shear stress (B 1) and 
so also to the shear-stress streaming (B 8). In a simple Stokes boundary layer, this 
augments by 50 % the normal-stress streaming. 
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Here we calculate the corresponding effect at  higher wavenumbers, finding once 
more that the additional shear-stress streaming follows a trend similar to that of the 
normal-stress streaming (derived in Appendix C) and produces some numerical 
augmentation thereof. However, both of them tend to zero for very large 
wavenumbers (unlike the main shear-stress streaming in f B.3) after first changing 
sign. 

We are looking, then, for a correction to the normal-stress streaming which, like 
it, takes the form of a constant multiple of VdV/dz, in terms of that spatial gradient 
dV/dz of velocity amplitude which characterizes wave growth or decay, Such a 
correction can be obtained from the general expression (B 18) for shear-stress 
streaming, with k complex, by working out its first-order change when a real value 
of k is replaced by k + is with 6 small. Then the resulting additional term in the form 
of a multiple of P s  (with s, as (A 4) and (A 5 )  imply, representing V-ldV/dz) must 
signify an additional shear-stress streaming equal to the same multiple of VdV/dz. 

This programme faces us with the problem of calculating the first-order changes in 
(B 18) when k changes by is; so that, as (A 5 )  for K implies, 

E changes by - is, K by iekK-' and K by - isEE1. (B 25) 

These changes take place, however, from initial values with k real so that k = k. 

be written as 
It will suffice to display the calculation for just the first term in (B 18), which can 

&-'P(K+lf) and changes by ~-lF"-is(kK-l-EK-l). (B 26) 

+-'Ps(Im K)k wIp2. (B 27) 

With k = k, this change becomes 

The corresponding calculation for the second term is extremely lengthy, although 
completely straightforward. The change in the whole expression (B 18), including 
both terms, can be written 

Here, the negative first term dominates for small K (that is, in the Stokes-layer 
limit). The other two terms - beginning with one similar in general appearance to 
(B 27) - are positive; and the last one becomes the leading term for large K when K 
is close to k. However, this is a limit in which (B 28) is tending to zero. 

With Ps replaced by VdV/dz the additional shear-stress streaming (B 28) may be 
written as 

-fV(dV/ds) U - ~ T ~ ( K )  (B 29) 

in terms of a non-dimensional function T ' ( K )  of the non-dimensional wavenumber 
(A 6). Figure 13 shows how the variation of T ~ ( K )  takes a very different form from 
that of g ( ~ )  ; thus, T ~ ( K )  changes much more steeply for small K ,  and in the opposite 
direction, causing it to take negative values for K > 0.2 before finally rising to its 
asymptote of zero for large K .  

We show in Appendix C that these characteristics of the additional shear-stress 
streaming mimic closely those of the rather larger normal-stress streaming. Just as 
in the Stokes-layer limit, then, the additional shear-stress streaming represents a 
moderate numerical enhancement of the normal-stress streaming. 
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Appendix C. High-wavenumber modifications to normal-stress streaming 
C. 1 .  Introduction 

I n  this Appendix we make one final use of those locally two-dimensional flow fields 
that were derived in Appendix A for wavenumbers comparable to the reciprocal of 
the Stokes-boundary-layer thickness. We employ them to calculate the normal-stress 
streaming forced by such gradients of the Reynolds normal stress 

P (u2)  (C 1) 

in the x-direction as may accompany wave growth or decay. 
In  this calculation we are faced with a classical conundrum in a new form. 

Gradients of Reynolds stresses are known to produce no effective forcing of 
streaming motions in flow regions with no dissipation, such as regions external to 
boundary layers. On the other hand, the mean value (C 1) takes non-zero values 
outside a Stokes boundary layer ; and we are faced, therefore, with the problem of 
how to express the fact that only the variations in (C 1 )  within the region of 
dissipation can produce forcing. 

Three solutions to  this problem suggest themselves, in ascending order of 
sophistication. All are equivalent in the Stokes-layer limit, but only the third 
continues to be available a t  higher wavenumbers. 

The first of these solutions simply argues that, since no effective forcing is provided 
by the Reynolds stress (C 1 )  in the region external to the boundary layer, the 
associated streaming motions must be forced purely by the difference 

P ( ( U Z )  - <U2)ext)  (C 2) 

between the stress (C 1) and its value in the exterior flow just outside the boundary 
layer. This effective forcing (C 2) is exerted only within the very thin Stokes layer, 
and tends to zero a t  its edge. The associated Euler mean motion uE, as defined in 
Appendix B, is governed by a balance 

between the gradient of this stress difference (C 2) and the viscous force which, within 
that thin layer, resists the Euler mean motion. 

A second solution - still using the boundary-layer approximation - goes ‘back to 
fundamentals ’ and recalls why gradients of Reynolds stress produce no streaming in 
dissipation-free regions external to boundary layers. This is because motions in such 
regions are irrotational ; accordingly, those combined gradients forcing the Euler 
mean velocity component uE which, by the equation of continuity, can be written 

( ;: ;;) a a 
ax aY 

p-(u2)+p-(uv) = p u-+v- , 

may be rewritten as 
a ( Z i:) ax p u-+v- =p- ($(u”+$(v2) )  

and balanced just by a static distribution of mean pressure 
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whose gradient in the y-direction is similarly found to balance the Reynolds stress 
gradients forcing the y-component v, of Euler mean velocity. 

Equation (C 3) may then be interpreted as stating that a gradient of the Reynolds 
normal stress (C 1) is opposed by a combination of (i) the viscous-force term on the 
right-hand side of (C 3) and (ii) a mean pressure gradient 

which, on the boundary-layer approximation, can be evaluated with p ,  taken as its 
value in the flow just outside the boundary layer. In  the present problem, for 
example, where in this exterior flow we have 

(u2) = (v2) as well as (uv) = 0, (C 8) 

the force (C 7) with p ,  given by (C 6 )  accounts for the whole of the ( u ~ ) ~ ~ ~  term in 
(C 3) ; whereas there is no corresponding term (since ( U V ) ~ ~ ~  = 0) in the equation 

a a2u, 
p-(uv) = p- 

a Y  aY2  

of which the integrated form (B 7) was used in Appendix B to calculate the shear- 
stress streaming component of the Euler mean motion. 

A third solution, however, is still more valuable because it avoids making any 
boundary-layer approximation. It goes even further ‘ back to fundamentals ’ ; that is, 
to Kelvin’s theorem, which explains precisely why irrotational flows must remain 
irrotational whereas sources of new vorticity can exist only in regions with 
dissipation. This suggests that we try to characterize normal-stress streaming, not in 
terms of momentum sources for the Euler mean motion as in (C 3), but in terms of 
vorticity sources for the Euler mean vorticity 

= au,/ay-av,/ax. (C 10) 

If we do this we avoid any need to use boundary-layer approximations such as the 
constancy of pressure across a boundary layer. Pressure is eliminated between 
equations 

I a a aP 
p-(u2)+p-(uv) = -A+pV%,, 

ax a Y  ax 

1 a a aP 
a Y  a Y  

p&(uv)+p-(v2) = --+pv2v, 

governing the Euler mean flow, so as to obtain an equation 

for the mean vorticity (C 10). 
Absolutely no boundary-layer approximation is needed, furthermore, for us to 

conclude that second derivatives a2/ax2 of mean values in (C 12) are negligible 
compared with their corresponding derivatives a2/ay2 with respect to y. Such mean 
values (for example, the integrand in (B 18), which represents (uv)) vary with y at  
least as steeply as e-2kg for all K (and, for small K when a Stokes layer exists, even 
more steeply) whereas logarithmic derivatives of mean values in the x-direction are 
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already taken as much smaller in magnitude than 2k when we apply high-frequency 
wave asymptotics. 

Equation (C 12) can correctly be approximated, then, as 

The solution of this linear equation of wE subject to the boundary condition (B 6) can 
be written as the sum of two solutions: 

(i) a vortex-sheet solution with wE = v-'(uv) in a thin layer separating the solid 
boundary, where condition (B 6) is satisfied, from an exterior motion where the Euler 
mean motion is given by (B 8) for the shear-stress streaming ; and 

(ii) a second vortex-sheet solution satisfying a zero boundary condition 

u E = O  on y = O  (C 14) 

(since solution (i) already satisfies condition (B 6) in full) and with the vorticity wE 
satisfying 

p-(u2-v') a = p-. awE 

ax aY 
In  the rest of this Appendix we calculate the strength of this vortex sheet, which, 
because of the boundary condition (C 14), represents the normal-stress streaming at  
its edge. 

Before doing so we note, however, that  in the Stokes-layer limit (C 15) coincides 
with the equation (C 3) that was derived by either of the first two approaches. This 
is because v is necessarily constant across a Stokes boundary layer, so that (v') is 
equal to its exterior value, which (C 8) identifies with that of (u'). 

C.2. Equations for normal-stress streaming 

The distribution wE of vorticity within the vortex sheet specified by (C 15) may be 
written 

wE = -v-'%Jy a m  (u2-v2)dy, 

where the upper limit represents, of course, the edge of the region within which the 
integrand is non-zero. The normal-stress streaming us is given as the vortex sheet's 
total strength (velocity change across it) 

Now (A 4) allow us to express the mean value (uz-v2) as 

( ~ 2 - 1 1 2 )  = .&412(le-kY -e-KY 12-1e-hY _kK-le-KY I )  2 

= ~(A12{(1-k21Kl-2)e-2yReK-2e-ky Re [(l-lcK-l)e-KY]}, (C 18) 

so that the integral on the right-hand side of (C 17) is equal to 

4 IA12{( 1 - k2 IKl-') (2 Re K)-' - 2 Re [ (1 - IcK-') (k +K)-7}. 

k(31KI2-22k ReK-k2) 1K)-21K+kl-2(2 ReK)-'. 

(C 19) 

Here, the real part of the expression in square brackets may be evaluated and then 
simplified as 

(C 20) 
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FIGURE 14. Here, the broken line gives the coefficient T&) by which normal-stress streaming (C 23) 
is modified at high wavenumbers. The solid line plots T ( K ) ,  defined in (C 25) as that linear 
combination of 7 1 ( ~ )  and T&) which modifies - as (C 26) shows - the term due to wave growth or 
decay in the classical acoustic-streaming formula. 

With this form used in (C 19), and with A substituted in terms of V from (A 5 ) ,  the 
integral on the right-hand side of (C 17) can be rewritten as 

9 (C 21) 
IK(P-k2-4k ReK(31KI2-2k ReK-k2)IK+kI-2 

8(Re K)' lK-k12 
P 

and thence as 

IKI2-k2 31KlZ-2kReK-kk2 
1K+kI2 

4k UP 
- 7 2 ( ~ )  with 7 & ~ )  = 
4 w  

Therefore, the normal-stress streaming (C 17) takes the form 

U S  = -iV(dV/dx) w-l T ~ ( K )  (C 23) 

in terms of a non-dimensional function 7&) of the non-dimensional wavenumber 
(A 6). 

C.3. Physical discussion of normal-stress streaming 
Figure 14 shows that 7 2 ( ~ )  varies (broken line) in a way rather similar to that 
illustrated for 7 1 ( ~ )  in figure 13. In the Stokes-layer limit of small K ,  (C 23) agrees with 
classical conclusions on normal-stress streaming because 72 = I. As K increases, 
however, 7&) falls quite steeply and soon takes negative values (somewhat larger in 
magnitude than those taken by 7J before finally tending to its asymptote of zero 
from below. 

These results deduced by calculation from the fundamental equation (C 15) can 
also be interpreted physically. Near the vibrating solid boundary, a normal stress 
p ( w 2 )  in the y-direction is substantial but can readily be balanced, as the second of 
equations (C 11) shows, by an equal and opposite term in the mean pressure p, ,  
whose gradient in the x-direction is then available to oppose the gradient of the 2- 
component p<u2) of normal stress. Thus, it is only the difference p(u2-v2 )  whose 
gradient forces normal-stress streaming. 

Now, in the Stokes-layer limit, the distribution of (u2)  near the solid boundary is 
as shown (solid line) in figure 15. This reminds us how a Stokes layer differs from 

20 FLM 239 
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FIGURE 15. This shows the distributions of(u2) (solid line) and (v') (broken line) in the Stokes- 
layer limit, both being made non-dimensional through division by 4P. Note that these distributions 
give the integral J," ((u') - {v')) y dy a positive value. Also, the integral J," ((u') - (v')) dy, made 
non-dimensional through division by t P ( v / w ) i ,  is shown (dotted line - with, evidently, a positive 
integral from 0 to 00).  

steady-flow boundary layers in that velocities take values near the outer edge which 
exceed those in the exterior flow just outside the layer (figure 5). The explanation lies 
in the oscillatory character of vorticity production a t  the solid surface, and in the 
subsequent diffusion of that  vorticity through the layer, which causes vorticities 
(and so also velocity gradients) in outer parts of the layer to be of opposite sign to 
those near the wall. 

The broken line in figure 15, besides being the asymptote of the plain line, depicts 
also the uniform variations of ( v 2 )  in the Stokes-layer limit. It is the fact that (uz) 
exceeds ( v 2 )  in the outer parts of the layer (where y is greatest) that  makes the 
integral in (C 17) take a positive value in that limit. 

In  further illustration of the same point, the dotted line in figure 15 gives the 
distribution of the integral in (C 16),  determining that distribution of vortex-sheet 
vorticity whose integrated value is the streaming velocity (C 17). Clearly this dotted 
line has a positive integral across the sheet. 

As K increases, on the other hand, the distributions of u and v change markedly, 
in the general direction of those distributions for large K that were plotted in figure 
11, with amplitudes everywhere greater for v than for u. Then the integral in (C 17) 
rapidly becomes negative, although tending to zero for large wavenumber as the 
sheet gets thinner and thinner. 

C.4. General discussion of high-wavenumber streaming 
For waves with spatial growth or decay, the combined effect of the two streaming 
components (B 29) and (C 23) may be written 
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defines T ( K )  as the non-dimensional factor modifying, at high wavenumbers the 
classical Stokes-layer result. This result, often known (Lighthill 1978a) as Rayleigh’s 
Law of Streaming, states that, for those standing waves which Rayleigh principally 
studied, the streaming velocity takes the form (C 24) with T = 1 in the Stokes-layer 
limit; although for travelling waves, of course, an additional term (B 9) appears. 

The complete streaming motion for travelling waves, then, takes the form 

immediately outside the ‘ vortex sheet ’ distribution of mean vorticity (C 10). Here, 
as K increases, V ( K )  rises gradually from 1 to 2 as in figure 13; while figure 14 shows 
that the form (solid line) of the other modifying factor T ( K )  is intermediate (as (C 25) 
implies) between those of T ~ ( K )  and T&). 

On the right-hand side of (C26), the term which retains its importance for all 
wavenumbers is the first one, representing regular shear-stress streaming. In  an 
extreme Stokes-layer limit of very small K ,  this Euler mean motion just outside the 
Stokes layer (that is, at  a point where ePKy is negligible and yet e-ky is approximately 
1) takes a value equal to one-quarter of the ‘Stokes drift ’ expression Pku-’ for the 
irrotational motions near such a point. (The Lagrange mean motion is, of course, the 
sum of the two.) 

For very large K ,  by contrast, the regular shear-stress streaming rises from one- 
quarter to one-half of that ‘Stokes drift ’ associated with a (then) purely hypothetical 
irrotational flow satisfying the boundary condition on v, This change from one- 
quarter to one-half intriguingly parallels a corresponding change (see Appendix A) in 
the ‘excess’ dissipation rate. 

For the waves on the basilar membrane, of course, we are specially concerned with 
the region of spatial decay of wave amplitude (dV/dz < 0) from its peak value. 
Equation (C 26) shows that, in such a region, the regular shear-stress streaming just 
discussed is augmented by the effects of both additional shear-stress streaming and 
also normal-stress streaming provided K remains small; on the other hand, it is 
somewhat diminished for larger values of K .  
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